These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 22976327)

  • 41. Differential effect of buffering agents on the crystallization of gemcitabine hydrochloride in frozen solutions.
    Patel M; Munjal B; Bansal AK
    Int J Pharm; 2014 Aug; 471(1-2):56-64. PubMed ID: 24836665
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Impact of heat treatment on the physical properties of noncrystalline multisolute systems concentrated in frozen aqueous solutions.
    Izutsu K; Yomota C; Kawanishi T
    J Pharm Sci; 2011 Dec; 100(12):5244-53. PubMed ID: 21780120
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The physical state of mannitol after freeze-drying: effects of mannitol concentration, freezing rate, and a noncrystallizing cosolute.
    Kim AI; Akers MJ; Nail SL
    J Pharm Sci; 1998 Aug; 87(8):931-5. PubMed ID: 9687336
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Investigation of drying stresses on proteins during lyophilization: differentiation between primary and secondary-drying stresses on lactate dehydrogenase using a humidity controlled mini freeze-dryer.
    Luthra S; Obert JP; Kalonia DS; Pikal MJ
    J Pharm Sci; 2007 Jan; 96(1):61-70. PubMed ID: 17031859
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Solute crystallization in mannitol-glycine systems--implications on protein stabilization in freeze-dried formulations.
    Pyne A; Chatterjee K; Suryanarayanan R
    J Pharm Sci; 2003 Nov; 92(11):2272-83. PubMed ID: 14603512
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Phase transitions in frozen systems and during freeze-drying: quantification using synchrotron X-ray diffractometry.
    Varshney DB; Sundaramurthi P; Kumar S; Shalaev EY; Kang SW; Gatlin LA; Suryanarayanan R
    Pharm Res; 2009 Jul; 26(7):1596-606. PubMed ID: 19326191
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Crystallization of trehalose in frozen solutions and its phase behavior during drying.
    Sundaramurthi P; Patapoff TW; Suryanarayanan R
    Pharm Res; 2010 Nov; 27(11):2374-83. PubMed ID: 20811935
    [TBL] [Abstract][Full Text] [Related]  

  • 48. A Comparison of Controlled Ice Nucleation Techniques for Freeze-Drying of a Therapeutic Antibody.
    Gitter JH; Geidobler R; Presser I; Winter G
    J Pharm Sci; 2018 Nov; 107(11):2748-2754. PubMed ID: 30055225
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Characterization of frozen solutions of glycine.
    Chongprasert S; Knopp SA; Nail SL
    J Pharm Sci; 2001 Nov; 90(11):1720-8. PubMed ID: 11745729
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The influence of tertiary butyl alcohol and volatile salts on the sublimation of ice from frozen sucrose solutions: implications for freeze-drying.
    Oesterle J; Franks F; Auffret T
    Pharm Dev Technol; 1998 May; 3(2):175-83. PubMed ID: 9653754
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Application of Optical Coherence Tomography Freeze-Drying Microscopy for Designing Lyophilization Process and Its Impact on Process Efficiency and Product Quality.
    Korang-Yeboah M; Srinivasan C; Siddiqui A; Awotwe-Otoo D; Cruz CN; Muhammad A
    AAPS PharmSciTech; 2018 Jan; 19(1):448-459. PubMed ID: 28785859
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Controlled nucleation in freeze-drying: effects on pore size in the dried product layer, mass transfer resistance, and primary drying rate.
    Konstantinidis AK; Kuu W; Otten L; Nail SL; Sever RR
    J Pharm Sci; 2011 Aug; 100(8):3453-3470. PubMed ID: 21465488
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Ultrasonication as a potential tool to predict solute crystallization in freeze-concentrates.
    Ragoonanan V; Suryanarayanan R
    Pharm Res; 2014 Jun; 31(6):1512-24. PubMed ID: 24398694
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Significant Drying Time Reduction Using Microwave-Assisted Freeze-Drying for a Monoclonal Antibody.
    Gitter JH; Geidobler R; Presser I; Winter G
    J Pharm Sci; 2018 Oct; 107(10):2538-2543. PubMed ID: 29890173
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Collapse temperature of solutions important for lyopreservation of living cells at ambient temperature.
    Yang G; Gilstrap K; Zhang A; Xu LX; He X
    Biotechnol Bioeng; 2010 Jun; 106(2):247-59. PubMed ID: 20148402
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Humidity induced collapse in freeze dried cakes: A direct visualization study using DVS.
    Duralliu A; Matejtschuk P; Williams DR
    Eur J Pharm Biopharm; 2018 Jun; 127():29-36. PubMed ID: 29408372
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Use of manometric temperature measurements (MTM) to characterize the freeze-drying behavior of amorphous protein formulations.
    Johnson RE; Oldroyd ME; Ahmed SS; Gieseler H; Lewis LM
    J Pharm Sci; 2010 Jun; 99(6):2863-73. PubMed ID: 19960528
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Observation of glassy state relaxation during annealing of frozen sugar solutions by X-ray computed tomography.
    Nakagawa K; Tamiya S; Do G; Kono S; Ochiai T
    Eur J Pharm Biopharm; 2018 Jun; 127():279-287. PubMed ID: 29510203
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Freeze-concentration separates proteins and polymer excipients into different amorphous phases.
    Izutsu K; Kojima S
    Pharm Res; 2000 Oct; 17(10):1316-22. PubMed ID: 11145240
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Well-plate freeze-drying: a high throughput platform for screening of physical properties of freeze-dried formulations.
    Trnka H; Rantanen J; Grohganz H
    Pharm Dev Technol; 2015 Jan; 20(1):65-73. PubMed ID: 24417680
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.