These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 22976544)

  • 1. Formation and optogenetic control of engineered 3D skeletal muscle bioactuators.
    Sakar MS; Neal D; Boudou T; Borochin MA; Li Y; Weiss R; Kamm RD; Chen CS; Asada HH
    Lab Chip; 2012 Dec; 12(23):4976-85. PubMed ID: 22976544
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of skeletal muscle constructs by topographic activation of cell alignment.
    Zhao Y; Zeng H; Nam J; Agarwal S
    Biotechnol Bioeng; 2009 Feb; 102(2):624-31. PubMed ID: 18958861
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Silk fibroin scaffolds with muscle-like elasticity support in vitro differentiation of human skeletal muscle cells.
    Chaturvedi V; Naskar D; Kinnear BF; Grenik E; Dye DE; Grounds MD; Kundu SC; Coombe DR
    J Tissue Eng Regen Med; 2017 Nov; 11(11):3178-3192. PubMed ID: 27878977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering a 3D in vitro model of human skeletal muscle at the single fiber scale.
    Urciuolo A; Serena E; Ghua R; Zatti S; Giomo M; Mattei N; Vetralla M; Selmin G; Luni C; Vitulo N; Valle G; Vitiello L; Elvassore N
    PLoS One; 2020; 15(5):e0232081. PubMed ID: 32374763
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell Density and Joint microRNA-133a and microRNA-696 Inhibition Enhance Differentiation and Contractile Function of Engineered Human Skeletal Muscle Tissues.
    Cheng CS; Ran L; Bursac N; Kraus WE; Truskey GA
    Tissue Eng Part A; 2016 Apr; 22(7-8):573-83. PubMed ID: 26891613
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 4D biofabrication of skeletal muscle microtissues.
    Apsite I; Uribe JM; Posada AF; Rosenfeldt S; Salehi S; Ionov L
    Biofabrication; 2019 Dec; 12(1):015016. PubMed ID: 31600742
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimizing the structure and contractility of engineered skeletal muscle thin films.
    Sun Y; Duffy R; Lee A; Feinberg AW
    Acta Biomater; 2013 Aug; 9(8):7885-94. PubMed ID: 23632372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of contractile skeletal muscle tissues using directly converted myoblasts from human fibroblasts.
    Shimizu K; Ohsumi S; Kishida T; Mazda O; Honda H
    J Biosci Bioeng; 2020 May; 129(5):632-637. PubMed ID: 31859190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mesenchymal stem cells and myoblast differentiation under HGF and IGF-1 stimulation for 3D skeletal muscle tissue engineering.
    Witt R; Weigand A; Boos AM; Cai A; Dippold D; Boccaccini AR; Schubert DW; Hardt M; Lange C; Arkudas A; Horch RE; Beier JP
    BMC Cell Biol; 2017 Feb; 18(1):15. PubMed ID: 28245809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crosstalk between developing vasculature and optogenetically engineered skeletal muscle improves muscle contraction and angiogenesis.
    Osaki T; Sivathanu V; Kamm RD
    Biomaterials; 2018 Feb; 156():65-76. PubMed ID: 29190499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Damage, Healing, and Remodeling in Optogenetic Skeletal Muscle Bioactuators.
    Raman R; Grant L; Seo Y; Cvetkovic C; Gapinske M; Palasz A; Dabbous H; Kong H; Pinera PP; Bashir R
    Adv Healthc Mater; 2017 Jun; 6(12):. PubMed ID: 28489332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic devices for construction of contractile skeletal muscle microtissues.
    Shimizu K; Araki H; Sakata K; Tonomura W; Hashida M; Konishi S
    J Biosci Bioeng; 2015 Feb; 119(2):212-6. PubMed ID: 25085533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interactions between Skeletal Muscle Myoblasts and their Extracellular Matrix Revealed by a Serum Free Culture System.
    Chaturvedi V; Dye DE; Kinnear BF; van Kuppevelt TH; Grounds MD; Coombe DR
    PLoS One; 2015; 10(6):e0127675. PubMed ID: 26030912
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microfabrication of a platform to measure and manipulate the mechanics of engineered microtissues.
    Ramade A; Legant WR; Picart C; Chen CS; Boudou T
    Methods Cell Biol; 2014; 121():191-211. PubMed ID: 24560511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of skeletal myotube formation and alignment by nanotopographically controlled cell-secreted extracellular matrix.
    Jiao A; Moerk CT; Penland N; Perla M; Kim J; Smith AST; Murry CE; Kim DH
    J Biomed Mater Res A; 2018 Jun; 106(6):1543-1551. PubMed ID: 29368451
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optogenetic skeletal muscle-powered adaptive biological machines.
    Raman R; Cvetkovic C; Uzel SG; Platt RJ; Sengupta P; Kamm RD; Bashir R
    Proc Natl Acad Sci U S A; 2016 Mar; 113(13):3497-502. PubMed ID: 26976577
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prolonged Culture of Aligned Skeletal Myotubes on Micromolded Gelatin Hydrogels.
    Bettadapur A; Suh GC; Geisse NA; Wang ER; Hua C; Huber HA; Viscio AA; Kim JY; Strickland JB; McCain ML
    Sci Rep; 2016 Jun; 6():28855. PubMed ID: 27350122
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of C2C12 Differentiation and Control of the Beating Dynamics of Contractile Cells for a Muscle-Driven Biosyncretic Crawler by Electrical Stimulation.
    Liu L; Zhang C; Wang W; Xi N; Wang Y
    Soft Robot; 2018 Dec; 5(6):748-760. PubMed ID: 30277855
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optogenetic control of contractile function in skeletal muscle.
    Bruegmann T; van Bremen T; Vogt CC; Send T; Fleischmann BK; Sasse P
    Nat Commun; 2015 Jun; 6():7153. PubMed ID: 26035411
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering multi-layered skeletal muscle tissue by using 3D microgrooved collagen scaffolds.
    Chen S; Nakamoto T; Kawazoe N; Chen G
    Biomaterials; 2015 Dec; 73():23-31. PubMed ID: 26398306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.