These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
171 related articles for article (PubMed ID: 22976580)
1. Development of bacteria-based microrobot using biocompatible poly(ethylene glycol). Cho S; Park SJ; Ko SY; Park JO; Park S Biomed Microdevices; 2012 Dec; 14(6):1019-25. PubMed ID: 22976580 [TBL] [Abstract][Full Text] [Related]
2. Selective bacterial patterning using the submerged properties of microbeads on agarose gel. Park SJ; Bae H; Ko SY; Min JJ; Park JO; Park S Biomed Microdevices; 2013 Oct; 15(5):793-9. PubMed ID: 23674143 [TBL] [Abstract][Full Text] [Related]
3. High salt stability and protein resistance of poly(L-lysine)-g-poly(ethylene glycol) copolymers covalently immobilized via aldehyde plasma polymer interlayers on inorganic and polymeric substrates. Blättler TM; Pasche S; Textor M; Griesser HJ Langmuir; 2006 Jun; 22(13):5760-9. PubMed ID: 16768506 [TBL] [Abstract][Full Text] [Related]
4. Surface modification of PLGA microspheres. Müller M; Vörös J; Csúcs G; Walter E; Danuser G; Merkle HP; Spencer ND; Textor M J Biomed Mater Res A; 2003 Jul; 66(1):55-61. PubMed ID: 12833431 [TBL] [Abstract][Full Text] [Related]
6. Superior cell delivery features of poly(ethylene glycol) incorporated alginate, chitosan, and poly-L-lysine microcapsules. Haque T; Chen H; Ouyang W; Martoni C; Lawuyi B; Urbanska AM; Prakash S Mol Pharm; 2005; 2(1):29-36. PubMed ID: 15804175 [TBL] [Abstract][Full Text] [Related]
7. The role of plasma proteins in cell adhesion to PEG surface-density-gradient-modified titanium oxide. Pei J; Hall H; Spencer ND Biomaterials; 2011 Dec; 32(34):8968-78. PubMed ID: 21872325 [TBL] [Abstract][Full Text] [Related]
8. Phagocytosis of poly(L-lysine)-graft-poly(ethylene glycol) coated microspheres by antigen presenting cells: Impact of grafting ratio and poly(ethylene glycol) chain length on cellular recognition. Wattendorf U; Koch MC; Walter E; Vörös J; Textor M; Merkle HP Biointerphases; 2006 Dec; 1(4):123-33. PubMed ID: 20408625 [TBL] [Abstract][Full Text] [Related]
9. Adsorption and lubricating properties of poly(l-lysine)-graft-poly(ethylene glycol) on human-hair surfaces. Lee S; Zürcher S; Dorcier A; Luengo GS; Spencer ND ACS Appl Mater Interfaces; 2009 Sep; 1(9):1938-45. PubMed ID: 20355818 [TBL] [Abstract][Full Text] [Related]
10. Locally Addressable Electrochemical Patterning Technique (LAEPT) applied to poly(L-lysine)-graft-poly(ethylene glycol) adlayers on titanium and silicon oxide surfaces. Tang CS; Schmutz P; Petronis S; Textor M; Keller B; Vörös J Biotechnol Bioeng; 2005 Aug; 91(3):285-95. PubMed ID: 15977251 [TBL] [Abstract][Full Text] [Related]
11. Physical adsorption of PEG grafted and blocked poly-L-lysine copolymers on adenovirus surface for enhanced gene transduction. Park JW; Mok H; Park TG J Control Release; 2010 Mar; 142(2):238-44. PubMed ID: 19913577 [TBL] [Abstract][Full Text] [Related]
12. Staphylococcus aureus adhesion to titanium oxide surfaces coated with non-functionalized and peptide-functionalized poly(L-lysine)-grafted-poly(ethylene glycol) copolymers. Harris LG; Tosatti S; Wieland M; Textor M; Richards RG Biomaterials; 2004 Aug; 25(18):4135-48. PubMed ID: 15046904 [TBL] [Abstract][Full Text] [Related]
13. Effect of chitosan coating on a bacteria-based alginate microrobot. Park SJ; Lee YK; Cho S; Uthaman S; Park IK; Min JJ; Ko SY; Park JO; Park S Biotechnol Bioeng; 2015 Apr; 112(4):769-76. PubMed ID: 25312282 [TBL] [Abstract][Full Text] [Related]
14. Reduced medical infection related bacterial strains adhesion on bioactive RGD modified titanium surfaces: a first step toward cell selective surfaces. Maddikeri RR; Tosatti S; Schuler M; Chessari S; Textor M; Richards RG; Harris LG J Biomed Mater Res A; 2008 Feb; 84(2):425-35. PubMed ID: 17618480 [TBL] [Abstract][Full Text] [Related]
15. Lactose-poly(ethylene glycol)-grafted poly-L-lysine as hepatoma cell-tapgeted gene carrier. Choi YH; Liu F; Park JS; Kim SW Bioconjug Chem; 1998; 9(6):708-18. PubMed ID: 9815164 [TBL] [Abstract][Full Text] [Related]
16. Automated time-resolved analysis of bacteria-substrate interactions using functionalized microparticles and flow cytometry. Xie X; Möller J; Konradi R; Kisielow M; Franco-Obregón A; Nyfeler E; Mühlebach A; Chabria M; Textor M; Lu Z; Reimhult E Biomaterials; 2011 Jul; 32(19):4347-57. PubMed ID: 21458060 [TBL] [Abstract][Full Text] [Related]
17. Study on galactose-poly(ethylene glycol)-poly(L-lysine) as novel gene vector for targeting hepatocytes in vitro. Hu HM; Zhang X; Zhong NQ; Pan SR J Biomater Sci Polym Ed; 2012; 23(5):677-95. PubMed ID: 21375808 [TBL] [Abstract][Full Text] [Related]
18. Grafting of poly(ethylene glycol) to poly-lysine augments its lifetime in blood circulation and accumulation in tumors without loss of the ability to associate with siRNA. Kano A; Moriyama K; Yamano T; Nakamura I; Shimada N; Maruyama A J Control Release; 2011 Jan; 149(1):2-7. PubMed ID: 20005270 [TBL] [Abstract][Full Text] [Related]
19. Folate receptor-mediated gene delivery using folate-poly(ethylene glycol)-poly(L-lysine) conjugate. Cho KC; Kim SH; Jeong JH; Park TG Macromol Biosci; 2005 Jun; 5(6):512-9. PubMed ID: 15948228 [TBL] [Abstract][Full Text] [Related]
20. Target-specific cellular uptake of PLGA nanoparticles coated with poly(L-lysine)-poly(ethylene glycol)-folate conjugate. Kim SH; Jeong JH; Chun KW; Park TG Langmuir; 2005 Sep; 21(19):8852-7. PubMed ID: 16142970 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]