BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 22976977)

  • 1. Directing the biosynthesis of putrebactin or desferrioxamine B in Shewanella putrefaciens through the upstream inhibition of ornithine decarboxylase.
    Soe CZ; Pakchung AA; Codd R
    Chem Biodivers; 2012 Sep; 9(9):1880-90. PubMed ID: 22976977
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unsaturated macrocyclic dihydroxamic acid siderophores produced by Shewanella putrefaciens using precursor-directed biosynthesis.
    Soe CZ; Codd R
    ACS Chem Biol; 2014 Apr; 9(4):945-56. PubMed ID: 24483365
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous biosynthesis of putrebactin, avaroferrin and bisucaberin by Shewanella putrefaciens and characterisation of complexes with iron(III), molybdenum(VI) or chromium(V).
    Soe CZ; Telfer TJ; Levina A; Lay PA; Codd R
    J Inorg Biochem; 2016 Sep; 162():207-215. PubMed ID: 26723537
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of a gene cluster that directs putrebactin biosynthesis in Shewanella species: PubC catalyzes cyclodimerization of N-hydroxy-N-succinylputrescine.
    Kadi N; Arbache S; Song L; Oves-Costales D; Challis GL
    J Am Chem Soc; 2008 Aug; 130(32):10458-9. PubMed ID: 18630910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The ornithine decarboxylase gene odc is required for alcaligin siderophore biosynthesis in Bordetella spp.: putrescine is a precursor of alcaligin.
    Brickman TJ; Armstrong SK
    J Bacteriol; 1996 Jan; 178(1):54-60. PubMed ID: 8550442
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dimeric and trimeric homo- and heteroleptic hydroxamic acid macrocycles formed using mixed-ligand Fe(III)-based metal-templated synthesis.
    Sresutharsan A; Tieu W; Richardson-Sanchez T; Soe CZ; Codd R
    J Inorg Biochem; 2017 Dec; 177():344-351. PubMed ID: 28797801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chelating Effect of Siderophore Desferrioxamine-B on Uranyl Biomineralization Mediated by
    Lu X; Zhang YY; Cheng W; Liu Y; Li Q; Li X; Dong F; Li J; Nie X
    Environ Sci Technol; 2024 Feb; 58(8):3974-3984. PubMed ID: 38306233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetic susceptibility of Mn(III) complexes of hydroxamate siderophores.
    Springer SD; Butler A
    J Inorg Biochem; 2015 Jul; 148():22-6. PubMed ID: 25978931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The chemical biology and coordination chemistry of putrebactin, avaroferrin, bisucaberin, and alcaligin.
    Codd R; Soe CZ; Pakchung AAH; Sresutharsan A; Brown CJM; Tieu W
    J Biol Inorg Chem; 2018 Oct; 23(7):969-982. PubMed ID: 29946977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complexes formed in solution between vanadium(IV)/(V) and the cyclic dihydroxamic acid putrebactin or linear suberodihydroxamic acid.
    Pakchung AA; Soe CZ; Lifa T; Codd R
    Inorg Chem; 2011 Jul; 50(13):5978-89. PubMed ID: 21627146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Studies of iron-uptake mechanisms in two bacterial species of the shewanella genus adapted to middle-range (Shewanella putrefaciens) or antarctic (Shewanella gelidimarina) temperatures.
    Pakchung AAH; Soe CZ; Codd R
    Chem Biodivers; 2008 Oct; 5(10):2113-2123. PubMed ID: 18972501
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Promiscuous Enzymes Cause Biosynthesis of Diverse Siderophores in Shewanella oneidensis.
    Wang S; Liang H; Liu L; Jiang X; Wu S; Gao H
    Appl Environ Microbiol; 2020 Mar; 86(7):. PubMed ID: 32005730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chaperone-assisted expression and purification of putrescine monooxygenase from Shewanella putrefaciens-95.
    Saroja NR; Mohan AHS; Srividya D; Supreetha K
    Protein Expr Purif; 2019 May; 157():9-16. PubMed ID: 30654014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complex Iron Uptake by the Putrebactin-Mediated and Feo Systems in Shewanella oneidensis.
    Liu L; Li S; Wang S; Dong Z; Gao H
    Appl Environ Microbiol; 2018 Oct; 84(20):. PubMed ID: 30097446
    [No Abstract]   [Full Text] [Related]  

  • 15. Metabolism of polyamines and basic amino acids in Erwinia amylovora: application of liquid chromatography/electrospray mass spectrometry to proferrioxamine precursor feeding and inhibition studies.
    Feistner GJ
    Biol Mass Spectrom; 1994 Dec; 23(12):793-803. PubMed ID: 7841214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of avaroferrin and putrebactin by heterologous expression of a deep-sea metagenomic DNA.
    Fujita MJ; Sakai R
    Mar Drugs; 2014 Sep; 12(9):4799-809. PubMed ID: 25222668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intracellular precipitation of Pb by Shewanella putrefaciens CN32 during the reductive dissolution of Pb-jarosite.
    Smeaton CM; Fryer BJ; Weisener CG
    Environ Sci Technol; 2009 Nov; 43(21):8086-91. PubMed ID: 19924927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dinuclear [(V(V)O(putrebactin))2(μ-OCH3)2] formed in solution as established from LC-MS measurements using 50V-enriched V2O5.
    Soe CZ; Pakchung AA; Codd R
    Inorg Chem; 2014 Jun; 53(11):5852-61. PubMed ID: 24834956
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Early developmental profile of ornithine decarboxylase in the frog, Microhyla ornata and its regulation by polyamines.
    Joseph K; Baby TG
    J Exp Zool; 1991 May; 258(2):158-63. PubMed ID: 2022946
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cellular control of ornithine decarboxylase activity by its antizyme.
    Heller JS; Canellakis ES
    J Cell Physiol; 1981 May; 107(2):209-17. PubMed ID: 7251680
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.