BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 22977169)

  • 1. TCDD-elicited effects on liver, serum, and adipose lipid composition in C57BL/6 mice.
    Angrish MM; Dominici CY; Zacharewski TR
    Toxicol Sci; 2013 Jan; 131(1):108-15. PubMed ID: 22977169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aryl hydrocarbon receptor-mediated induction of Stearoyl-CoA desaturase 1 alters hepatic fatty acid composition in TCDD-elicited steatosis.
    Angrish MM; Jones AD; Harkema JR; Zacharewski TR
    Toxicol Sci; 2011 Dec; 124(2):299-310. PubMed ID: 21890736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dietary fat is a lipid source in 2,3,7,8-tetrachlorodibenzo-ρ-dioxin (TCDD)-elicited hepatic steatosis in C57BL/6 mice.
    Angrish MM; Mets BD; Jones AD; Zacharewski TR
    Toxicol Sci; 2012 Aug; 128(2):377-86. PubMed ID: 22539624
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipidomic Evaluation of Aryl Hydrocarbon Receptor-Mediated Hepatic Steatosis in Male and Female Mice Elicited by 2,3,7,8-Tetrachlorodibenzo-p-dioxin.
    Nault R; Fader KA; Lydic TA; Zacharewski TR
    Chem Res Toxicol; 2017 Apr; 30(4):1060-1075. PubMed ID: 28238261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) alters hepatic polyunsaturated fatty acid metabolism and eicosanoid biosynthesis in female Sprague-Dawley rats.
    Doskey CM; Fader KA; Nault R; Lydic T; Matthews J; Potter D; Sharratt B; Williams K; Zacharewski T
    Toxicol Appl Pharmacol; 2020 Jul; 398():115034. PubMed ID: 32387183
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of estrogen and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) with hepatic fatty acid synthesis and metabolism of male chickens (Gallus domesticus).
    Stanton B; Watkins S; German JB; Lasley B
    Comp Biochem Physiol C Toxicol Pharmacol; 2001 Jun; 129(2):137-50. PubMed ID: 11423386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of estrogen and 2,3,7,8-tetrachlorodibenzo-rho-dioxin (TCDD) on plasma fatty acids of immature male chickens (Gallus domesticus).
    Stanton BJ; Watkins SM; German JB; Lasley BL
    Comp Biochem Physiol C Toxicol Pharmacol; 2002 Jun; 132(2):129-42. PubMed ID: 12106890
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differences in acute toxicity syndromes of 2,3,7,8-tetrachlorodibenzo-p-dioxin and 1,2,3,4,7,8-hexachlorodibenzo-p-dioxin in rats.
    Niittynen M; Simanainen U; Syrjälä P; Pohjanvirta R; Viluksela M; Tuomisto J; Tuomisto JT
    Toxicology; 2007 Jun; 235(1-2):39-51. PubMed ID: 17448584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Knockout of the aryl hydrocarbon receptor results in distinct hepatic and renal phenotypes in rats and mice.
    Harrill JA; Hukkanen RR; Lawson M; Martin G; Gilger B; Soldatow V; Lecluyse EL; Budinsky RA; Rowlands JC; Thomas RS
    Toxicol Appl Pharmacol; 2013 Oct; 272(2):503-18. PubMed ID: 23859880
    [TBL] [Abstract][Full Text] [Related]  

  • 10. NTP technical report on the toxicology and carcinogenesis studies of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) (CAS No. 1746-01-6) in female Harlan Sprague-Dawley rats (Gavage Studies).
    National Toxicology Program
    Natl Toxicol Program Tech Rep Ser; 2006 Apr; (521):4-232. PubMed ID: 16835633
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative metabolomic and genomic analyses of TCDD-elicited metabolic disruption in mouse and rat liver.
    Forgacs AL; Kent MN; Makley MK; Mets B; DelRaso N; Jahns GL; Burgoon LD; Zacharewski TR; Reo NV
    Toxicol Sci; 2012 Jan; 125(1):41-55. PubMed ID: 21964420
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temporal and dose-dependent hepatic gene expression patterns in mice provide new insights into TCDD-Mediated hepatotoxicity.
    Boverhof DR; Burgoon LD; Tashiro C; Chittim B; Harkema JR; Jump DB; Zacharewski TR
    Toxicol Sci; 2005 Jun; 85(2):1048-63. PubMed ID: 15800033
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fibroblast growth factor (Fgf) 21 is a novel target gene of the aryl hydrocarbon receptor (AhR).
    Cheng X; Vispute SG; Liu J; Cheng C; Kharitonenkov A; Klaassen CD
    Toxicol Appl Pharmacol; 2014 Jul; 278(1):65-71. PubMed ID: 24769090
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 2,3,7,8-Tetrachlorodibenzo-p-Dioxin Alters Lipid Metabolism and Depletes Immune Cell Populations in the Jejunum of C57BL/6 Mice.
    Fader KA; Nault R; Ammendolia DA; Harkema JR; Williams KJ; Crawford RB; Kaminski NE; Potter D; Sharratt B; Zacharewski TR
    Toxicol Sci; 2015 Dec; 148(2):567-80. PubMed ID: 26377647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Convergence of hepcidin deficiency, systemic iron overloading, heme accumulation, and REV-ERBα/β activation in aryl hydrocarbon receptor-elicited hepatotoxicity.
    Fader KA; Nault R; Kirby MP; Markous G; Matthews J; Zacharewski TR
    Toxicol Appl Pharmacol; 2017 Apr; 321():1-17. PubMed ID: 28213091
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterizing the Role of HMG-CoA Reductase in Aryl Hydrocarbon Receptor-Mediated Liver Injury in C57BL/6 Mice.
    Dornbos P; Jurgelewicz A; Fader KA; Williams K; Zacharewski TR; LaPres JJ
    Sci Rep; 2019 Nov; 9(1):15828. PubMed ID: 31676775
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-dose dioxins alter gene expression related to cholesterol biosynthesis, lipogenesis, and glucose metabolism through the aryl hydrocarbon receptor-mediated pathway in mouse liver.
    Sato S; Shirakawa H; Tomita S; Ohsaki Y; Haketa K; Tooi O; Santo N; Tohkin M; Furukawa Y; Gonzalez FJ; Komai M
    Toxicol Appl Pharmacol; 2008 May; 229(1):10-9. PubMed ID: 18295293
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aryl Hydrocarbon Receptor (AhR) Activation by 2,3,7,8-Tetrachlorodibenzo-
    Fling RR; Zacharewski TR
    Int J Mol Sci; 2021 Nov; 22(22):. PubMed ID: 34830313
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chronic exposure of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induces an obesogenic effect in C57BL/6J mice fed a high fat diet.
    Brulport A; Le Corre L; Chagnon MC
    Toxicology; 2017 Sep; 390():43-52. PubMed ID: 28774668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dioxin-elicited decrease in cobalamin redirects propionyl-CoA metabolism to the β-oxidation-like pathway resulting in acrylyl-CoA conjugate buildup.
    Orlowska K; Fling RR; Nault R; Sink WJ; Schilmiller AL; Zacharewski T
    J Biol Chem; 2022 Sep; 298(9):102301. PubMed ID: 35931118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.