These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. SLiMSearch: a framework for proteome-wide discovery and annotation of functional modules in intrinsically disordered regions. Krystkowiak I; Davey NE Nucleic Acids Res; 2017 Jul; 45(W1):W464-W469. PubMed ID: 28387819 [TBL] [Abstract][Full Text] [Related]
3. Attributes of short linear motifs. Davey NE; Van Roey K; Weatheritt RJ; Toedt G; Uyar B; Altenberg B; Budd A; Diella F; Dinkel H; Gibson TJ Mol Biosyst; 2012 Jan; 8(1):268-81. PubMed ID: 21909575 [TBL] [Abstract][Full Text] [Related]
4. Bioinformatics Approaches for Predicting Disordered Protein Motifs. Bhowmick P; Guharoy M; Tompa P Adv Exp Med Biol; 2015; 870():291-318. PubMed ID: 26387106 [TBL] [Abstract][Full Text] [Related]
5. The human Ago2 MC region does not contain an eIF4E-like mRNA cap binding motif. Kinch LN; Grishin NV Biol Direct; 2009 Jan; 4():2. PubMed ID: 19159466 [TBL] [Abstract][Full Text] [Related]
6. Discovery of short linear motif-mediated interactions through phage display of intrinsically disordered regions of the human proteome. Davey NE; Seo MH; Yadav VK; Jeon J; Nim S; Krystkowiak I; Blikstad C; Dong D; Markova N; Kim PM; Ivarsson Y FEBS J; 2017 Feb; 284(3):485-498. PubMed ID: 28002650 [TBL] [Abstract][Full Text] [Related]
7. Masking residues using context-specific evolutionary conservation significantly improves short linear motif discovery. Davey NE; Shields DC; Edwards RJ Bioinformatics; 2009 Feb; 25(4):443-50. PubMed ID: 19136552 [TBL] [Abstract][Full Text] [Related]
8. DisCons: a novel tool to quantify and classify evolutionary conservation of intrinsic protein disorder. Varadi M; Guharoy M; Zsolyomi F; Tompa P BMC Bioinformatics; 2015 May; 16(1):153. PubMed ID: 25968230 [TBL] [Abstract][Full Text] [Related]
9. Computational Prediction of Disordered Protein Motifs Using SLiMSuite. Edwards RJ; Paulsen K; Aguilar Gomez CM; Pérez-Bercoff Å Methods Mol Biol; 2020; 2141():37-72. PubMed ID: 32696352 [TBL] [Abstract][Full Text] [Related]
10. A tree-based conservation scoring method for short linear motifs in multiple alignments of protein sequences. Chica C; Labarga A; Gould CM; López R; Gibson TJ BMC Bioinformatics; 2008 May; 9():229. PubMed ID: 18460207 [TBL] [Abstract][Full Text] [Related]
11. The conservation pattern of short linear motifs is highly correlated with the function of interacting protein domains. Ren S; Yang G; He Y; Wang Y; Li Y; Chen Z BMC Genomics; 2008 Oct; 9():452. PubMed ID: 18828911 [TBL] [Abstract][Full Text] [Related]
12. Sequence conservation of protein binding segments in intrinsically disordered regions. Ota H; Fukuchi S Biochem Biophys Res Commun; 2017 Dec; 494(3-4):602-607. PubMed ID: 29066345 [TBL] [Abstract][Full Text] [Related]
13. Prediction of short linear protein binding regions. Mooney C; Pollastri G; Shields DC; Haslam NJ J Mol Biol; 2012 Jan; 415(1):193-204. PubMed ID: 22079048 [TBL] [Abstract][Full Text] [Related]
14. Proteome-wide discovery of evolutionary conserved sequences in disordered regions. Nguyen Ba AN; Yeh BJ; van Dyk D; Davidson AR; Andrews BJ; Weiss EL; Moses AM Sci Signal; 2012 Mar; 5(215):rs1. PubMed ID: 22416277 [TBL] [Abstract][Full Text] [Related]
15. Discovering short linear protein motif based on selective training of profile hidden Markov models. Song T; Gu H J Theor Biol; 2015 Jul; 377():75-84. PubMed ID: 25791288 [TBL] [Abstract][Full Text] [Related]
16. Chemical composition is maintained in poorly conserved intrinsically disordered regions and suggests a means for their classification. Moesa HA; Wakabayashi S; Nakai K; Patil A Mol Biosyst; 2012 Oct; 8(12):3262-73. PubMed ID: 23076520 [TBL] [Abstract][Full Text] [Related]
17. HH-MOTiF: de novo detection of short linear motifs in proteins by Hidden Markov Model comparisons. Prytuliak R; Volkmer M; Meier M; Habermann BH Nucleic Acids Res; 2017 Jul; 45(W1):W470-W477. PubMed ID: 28460141 [TBL] [Abstract][Full Text] [Related]
18. A conserved motif within the flexible C-terminus of the translational regulator 4E-BP is required for tight binding to the mRNA cap-binding protein eIF4E. Paku KS; Umenaga Y; Usui T; Fukuyo A; Mizuno A; In Y; Ishida T; Tomoo K Biochem J; 2012 Jan; 441(1):237-45. PubMed ID: 21913890 [TBL] [Abstract][Full Text] [Related]
19. Proteome-wide analysis of human disease mutations in short linear motifs: neglected players in cancer? Uyar B; Weatheritt RJ; Dinkel H; Davey NE; Gibson TJ Mol Biosyst; 2014 Oct; 10(10):2626-42. PubMed ID: 25057855 [TBL] [Abstract][Full Text] [Related]
20. The C terminus of initiation factor 4E-binding protein 1 contains multiple regulatory features that influence its function and phosphorylation. Wang X; Li W; Parra JL; Beugnet A; Proud CG Mol Cell Biol; 2003 Mar; 23(5):1546-57. PubMed ID: 12588975 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]