These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 22977834)

  • 1. Peculiarities of sensory support of psychomotor activity that requires visual attention.
    Tkachenko PV; Bobyntsev II
    Bull Exp Biol Med; 2012 Aug; 153(4):419-23. PubMed ID: 22977834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Abnormal visual experience during development alters the early stages of visual-tactile integration.
    Niechwiej-Szwedo E; Chin J; Wolfe PJ; Popovich C; Staines WR
    Behav Brain Res; 2016 May; 304():111-9. PubMed ID: 26896697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling cyclic variations in sustained human performance as measured by reaction time and the flash visual evoked potential-P2.
    Case JL; Arruda JE; VanWormer LA
    Int J Psychophysiol; 2016 Mar; 101():43-9. PubMed ID: 26825236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of involuntary auditory attention on visual task performance and brain activity.
    Alho K; Escera C; Díaz R; Yago E; Serra JM
    Neuroreport; 1997 Oct; 8(15):3233-7. PubMed ID: 9351649
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Attention and sensory gain control: a peripheral visual process?
    Handy TC; Khoe W
    J Cogn Neurosci; 2005 Dec; 17(12):1936-49. PubMed ID: 16356330
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visual-shift adaptation is composed of separable sensory and task-dependent effects.
    Simani MC; McGuire LM; Sabes PN
    J Neurophysiol; 2007 Nov; 98(5):2827-41. PubMed ID: 17728389
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Slow fluctuations in attentional control of sensory cortex.
    Kam JW; Dao E; Farley J; Fitzpatrick K; Smallwood J; Schooler JW; Handy TC
    J Cogn Neurosci; 2011 Feb; 23(2):460-70. PubMed ID: 20146593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Age-related differences in performance and stimulus processing in dual task situation.
    Hahn M; Wild-Wall N; Falkenstein M
    Brain Res; 2011 Sep; 1414():66-76. PubMed ID: 21871612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of sound location on visual task performance and electrophysiological measures of distraction.
    Corral MJ; Escera C
    Neuroreport; 2008 Oct; 19(15):1535-9. PubMed ID: 18797312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Auditory and visual cortical activity during selective attention in fragile X syndrome: a cascade of processing deficiencies.
    Van der Molen MJ; Van der Molen MW; Ridderinkhof KR; Hamel BC; Curfs LM; Ramakers GJ
    Clin Neurophysiol; 2012 Apr; 123(4):720-9. PubMed ID: 21958658
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrophysiological correlates of conscious vision: evidence from unilateral extinction.
    Marzi CA; Girelli M; Miniussi C; Smania N; Maravita A
    J Cogn Neurosci; 2000 Sep; 12(5):869-77. PubMed ID: 11054928
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Primary Visual Cortex Is Differentially Modulated by Stimulus-Driven and Top-Down Attention.
    Bekisz M; Bogdan W; Ghazaryan A; Waleszczyk WJ; Kublik E; Wróbel A
    PLoS One; 2016; 11(1):e0145379. PubMed ID: 26730705
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuronal Modulations in Visual Cortex Are Associated with Only One of Multiple Components of Attention.
    Luo TZ; Maunsell JH
    Neuron; 2015 Jun; 86(5):1182-8. PubMed ID: 26050038
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Endogenous components reflecting visual attention and controlled search to coloured stimuli.
    Wijers AA; Mulder G; Mulder LJ; Lorist MM; Poiesz RS; Scheffers MK
    Electroencephalogr Clin Neurophysiol Suppl; 1987; 40():138-45. PubMed ID: 3480114
    [No Abstract]   [Full Text] [Related]  

  • 15. Darkness beyond the light: attentional inhibition surrounding the classic spotlight.
    Slotnick SD; Hopfinger JB; Klein SA; Sutter EE
    Neuroreport; 2002 May; 13(6):773-8. PubMed ID: 11997685
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Visual Attention Monitor Based on Steady-State Visual Evoked Potential.
    Lee YC; Lin WC; Cherng FY; Ko LW
    IEEE Trans Neural Syst Rehabil Eng; 2016 Mar; 24(3):399-408. PubMed ID: 26595924
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Changes in evoked potentials depending on attention level in performance of visual tasks].
    Baranov-Krylov IN; Shuvaev VT; Berlov DN
    Fiziol Cheloveka; 2003; 29(2):11-7. PubMed ID: 12751216
    [No Abstract]   [Full Text] [Related]  

  • 18. Cannabis with high δ9-THC contents affects perception and visual selective attention acutely: an event-related potential study.
    Böcker KB; Gerritsen J; Hunault CC; Kruidenier M; Mensinga TT; Kenemans JL
    Pharmacol Biochem Behav; 2010 Jul; 96(1):67-74. PubMed ID: 20417659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reliance on visual attention during visuomotor adaptation: an SSVEP study.
    Reuter EM; Bednark J; Cunnington R
    Exp Brain Res; 2015 Jul; 233(7):2041-51. PubMed ID: 25893908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Visually evoked potentials and visual acuity of the young child].
    van Nieuwenhuizen O
    Tijdschr Kindergeneeskd; 1989 Jun; 57(3):117-20. PubMed ID: 2799799
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.