These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Boron rings enclosing planar hypercoordinate group 14 elements. Islas R; Heine T; Ito K; Schleyer Pv; Merino G J Am Chem Soc; 2007 Nov; 129(47):14767-74. PubMed ID: 17983228 [TBL] [Abstract][Full Text] [Related]
4. Comprehensive analysis of chemical bonding in boron clusters. Zubarev DY; Boldyrev AI J Comput Chem; 2007 Jan; 28(1):251-68. PubMed ID: 17111395 [TBL] [Abstract][Full Text] [Related]
5. Valence isoelectronic substitution in the B8(-) and B9(-) molecular wheels by an Al dopant atom: umbrella-like structures of AlB7(-) and AlB8(-). Galeev TR; Romanescu C; Li WL; Wang LS; Boldyrev AI J Chem Phys; 2011 Sep; 135(10):104301. PubMed ID: 21932887 [TBL] [Abstract][Full Text] [Related]
6. Geometrical requirements for transition-metal-centered aromatic boron wheels: the case of VB10(-). Li WL; Romanescu C; Piazza ZA; Wang LS Phys Chem Chem Phys; 2012 Oct; 14(39):13663-9. PubMed ID: 22968622 [TBL] [Abstract][Full Text] [Related]
7. Understanding boron through size-selected clusters: structure, chemical bonding, and fluxionality. Sergeeva AP; Popov IA; Piazza ZA; Li WL; Romanescu C; Wang LS; Boldyrev AI Acc Chem Res; 2014 Apr; 47(4):1349-58. PubMed ID: 24661097 [TBL] [Abstract][Full Text] [Related]
8. Aromaticity of planar boron clusters confirmed. Aihara J; Kanno H; Ishida T J Am Chem Soc; 2005 Sep; 127(38):13324-30. PubMed ID: 16173765 [TBL] [Abstract][Full Text] [Related]
9. Ribbon aromaticity in double-chain planar B(n)H2(2-) and Li2B(n)H2 nanoribbon clusters up to n = 22: lithiated boron dihydride analogues of polyenes. Bai H; Chen Q; Miao CQ; Mu YW; Wu YB; Lu HG; Zhai HJ; Li SD Phys Chem Chem Phys; 2013 Nov; 15(43):18872-80. PubMed ID: 24089246 [TBL] [Abstract][Full Text] [Related]
10. B14: an all-boron fullerene. Cheng L J Chem Phys; 2012 Mar; 136(10):104301. PubMed ID: 22423832 [TBL] [Abstract][Full Text] [Related]
11. Probing the planar tetra-, penta-, and hexacoordinate carbon in carbon-boron mixed clusters. Pei Y; Zeng XC J Am Chem Soc; 2008 Feb; 130(8):2580-92. PubMed ID: 18237168 [TBL] [Abstract][Full Text] [Related]
12. Experimental and theoretical investigations of CB8-: towards rational design of hypercoordinated planar chemical species. Averkiev BB; Wang LM; Huang W; Wang LS; Boldyrev AI Phys Chem Chem Phys; 2009 Nov; 11(42):9840-9. PubMed ID: 19851564 [TBL] [Abstract][Full Text] [Related]
13. Planar hepta-, octa-, nona-, and decacoordinate first row d-block metals enclosed by boron rings. Pu Z; Ito K; Schleyer Pv; Li QS Inorg Chem; 2009 Nov; 48(22):10679-86. PubMed ID: 19842659 [TBL] [Abstract][Full Text] [Related]
14. Photoelectron spectroscopy and ab initio study of boron-carbon mixed clusters: CB9- and C2B8-. Galeev TR; Li WL; Romanescu C; Cernusák I; Wang LS; Boldyrev AI J Chem Phys; 2012 Dec; 137(23):234306. PubMed ID: 23267485 [TBL] [Abstract][Full Text] [Related]
15. Boron-Based Inverse Sandwich V Han PF; Sun Q; Zhai HJ Molecules; 2023 Jun; 28(12):. PubMed ID: 37375276 [TBL] [Abstract][Full Text] [Related]
16. Geometric and electronic factors in the rational design of transition-metal-centered boron molecular wheels. Romanescu C; Galeev TR; Li WL; Boldyrev AI; Wang LS J Chem Phys; 2013 Apr; 138(13):134315. PubMed ID: 23574235 [TBL] [Abstract][Full Text] [Related]