BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 22978784)

  • 1. All-atom stability and oligomerization simulations of polyglutamine nanotubes with and without the 17-amino-acid N-terminal fragment of the Huntingtin protein.
    Côté S; Wei G; Mousseau N
    J Phys Chem B; 2012 Oct; 116(40):12168-79. PubMed ID: 22978784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atomistic mechanisms of huntingtin N-terminal fragment insertion on a phospholipid bilayer revealed by molecular dynamics simulations.
    Côté S; Wei G; Mousseau N
    Proteins; 2014 Jul; 82(7):1409-27. PubMed ID: 24415136
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Secondary structures of native and pathogenic huntingtin N-terminal fragments.
    Długosz M; Trylska J
    J Phys Chem B; 2011 Oct; 115(40):11597-608. PubMed ID: 21910495
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural insights into the aggregation mechanism of huntingtin exon 1 protein fragment with different polyQ-lengths.
    Priya SB; Gromiha MM
    J Cell Biochem; 2019 Jun; 120(6):10519-10529. PubMed ID: 30672003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Slow amyloid nucleation via α-helix-rich oligomeric intermediates in short polyglutamine-containing huntingtin fragments.
    Jayaraman M; Kodali R; Sahoo B; Thakur AK; Mayasundari A; Mishra R; Peterson CB; Wetzel R
    J Mol Biol; 2012 Feb; 415(5):881-99. PubMed ID: 22178474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polyglutamine induced misfolding of huntingtin exon1 is modulated by the flanking sequences.
    Lakhani VV; Ding F; Dokholyan NV
    PLoS Comput Biol; 2010 Apr; 6(4):e1000772. PubMed ID: 20442863
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spontaneous formation of polyglutamine nanotubes with molecular dynamics simulations.
    Laghaei R; Mousseau N
    J Chem Phys; 2010 Apr; 132(16):165102. PubMed ID: 20441310
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polyglutamine amyloid core boundaries and flanking domain dynamics in huntingtin fragment fibrils determined by solid-state nuclear magnetic resonance.
    Hoop CL; Lin HK; Kar K; Hou Z; Poirier MA; Wetzel R; van der Wel PC
    Biochemistry; 2014 Oct; 53(42):6653-66. PubMed ID: 25280367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibiting the nucleation of amyloid structure in a huntingtin fragment by targeting α-helix-rich oligomeric intermediates.
    Mishra R; Jayaraman M; Roland BP; Landrum E; Fullam T; Kodali R; Thakur AK; Arduini I; Wetzel R
    J Mol Biol; 2012 Feb; 415(5):900-17. PubMed ID: 22178478
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and Dynamics of the Huntingtin Exon-1 N-Terminus: A Solution NMR Perspective.
    Baias M; Smith PE; Shen K; Joachimiak LA; Żerko S; Koźmiński W; Frydman J; Frydman L
    J Am Chem Soc; 2017 Jan; 139(3):1168-1176. PubMed ID: 28085263
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Investigating Mutations to Reduce Huntingtin Aggregation by Increasing Htt-N-Terminal Stability and Weakening Interactions with PolyQ Domain.
    Smaoui MR; Mazza-Anthony C; Waldispühl J
    Comput Math Methods Med; 2016; 2016():6247867. PubMed ID: 28096892
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The possible structural models for polyglutamine aggregation: a molecular dynamics simulations study.
    Zhou ZL; Zhao JH; Liu HL; Wu JW; Liu KT; Chuang CK; Tsai WB; Ho Y
    J Biomol Struct Dyn; 2011 Apr; 28(5):743-58. PubMed ID: 21294586
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study of the aggregation mechanism of polyglutamine peptides using replica exchange molecular dynamics simulations.
    Nakano M; Ebina K; Tanaka S
    J Mol Model; 2013 Apr; 19(4):1627-39. PubMed ID: 23288093
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aggregation landscapes of Huntingtin exon 1 protein fragments and the critical repeat length for the onset of Huntington's disease.
    Chen M; Wolynes PG
    Proc Natl Acad Sci U S A; 2017 Apr; 114(17):4406-4411. PubMed ID: 28400517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular dynamics simulation study on the structural stabilities of polyglutamine peptides.
    Ogawa H; Nakano M; Watanabe H; Starikov EB; Rothstein SM; Tanaka S
    Comput Biol Chem; 2008 Apr; 32(2):102-10. PubMed ID: 18243803
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transformation between α-helix and β-sheet structures of one and two polyglutamine peptides in explicit water molecules by replica-exchange molecular dynamics simulations.
    Chiang HL; Chen CJ; Okumura H; Hu CK
    J Comput Chem; 2014 Jul; 35(19):1430-7. PubMed ID: 24831733
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The emerging role of the first 17 amino acids of huntingtin in Huntington's disease.
    Arndt JR; Chaibva M; Legleiter J
    Biomol Concepts; 2015 Mar; 6(1):33-46. PubMed ID: 25741791
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solid-State Nuclear Magnetic Resonance on the Static and Dynamic Domains of Huntingtin Exon-1 Fibrils.
    Isas JM; Langen R; Siemer AB
    Biochemistry; 2015 Jun; 54(25):3942-9. PubMed ID: 26020223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The polyglutamine domain is the primary driver of seeding in huntingtin aggregation.
    Skeens A; Siriwardhana C; Massinople SE; Wunder MM; Ellis ZL; Keith KM; Girman T; Frey SL; Legleiter J
    PLoS One; 2024; 19(3):e0298323. PubMed ID: 38483973
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polyglutamine disruption of the huntingtin exon 1 N terminus triggers a complex aggregation mechanism.
    Thakur AK; Jayaraman M; Mishra R; Thakur M; Chellgren VM; Byeon IJ; Anjum DH; Kodali R; Creamer TP; Conway JF; Gronenborn AM; Wetzel R
    Nat Struct Mol Biol; 2009 Apr; 16(4):380-9. PubMed ID: 19270701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.