These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
250 related articles for article (PubMed ID: 22978784)
1. All-atom stability and oligomerization simulations of polyglutamine nanotubes with and without the 17-amino-acid N-terminal fragment of the Huntingtin protein. Côté S; Wei G; Mousseau N J Phys Chem B; 2012 Oct; 116(40):12168-79. PubMed ID: 22978784 [TBL] [Abstract][Full Text] [Related]
2. Atomistic mechanisms of huntingtin N-terminal fragment insertion on a phospholipid bilayer revealed by molecular dynamics simulations. Côté S; Wei G; Mousseau N Proteins; 2014 Jul; 82(7):1409-27. PubMed ID: 24415136 [TBL] [Abstract][Full Text] [Related]
3. Secondary structures of native and pathogenic huntingtin N-terminal fragments. Długosz M; Trylska J J Phys Chem B; 2011 Oct; 115(40):11597-608. PubMed ID: 21910495 [TBL] [Abstract][Full Text] [Related]
4. Structural insights into the aggregation mechanism of huntingtin exon 1 protein fragment with different polyQ-lengths. Priya SB; Gromiha MM J Cell Biochem; 2019 Jun; 120(6):10519-10529. PubMed ID: 30672003 [TBL] [Abstract][Full Text] [Related]
5. Slow amyloid nucleation via α-helix-rich oligomeric intermediates in short polyglutamine-containing huntingtin fragments. Jayaraman M; Kodali R; Sahoo B; Thakur AK; Mayasundari A; Mishra R; Peterson CB; Wetzel R J Mol Biol; 2012 Feb; 415(5):881-99. PubMed ID: 22178474 [TBL] [Abstract][Full Text] [Related]
6. Polyglutamine induced misfolding of huntingtin exon1 is modulated by the flanking sequences. Lakhani VV; Ding F; Dokholyan NV PLoS Comput Biol; 2010 Apr; 6(4):e1000772. PubMed ID: 20442863 [TBL] [Abstract][Full Text] [Related]
7. Spontaneous formation of polyglutamine nanotubes with molecular dynamics simulations. Laghaei R; Mousseau N J Chem Phys; 2010 Apr; 132(16):165102. PubMed ID: 20441310 [TBL] [Abstract][Full Text] [Related]
8. Polyglutamine amyloid core boundaries and flanking domain dynamics in huntingtin fragment fibrils determined by solid-state nuclear magnetic resonance. Hoop CL; Lin HK; Kar K; Hou Z; Poirier MA; Wetzel R; van der Wel PC Biochemistry; 2014 Oct; 53(42):6653-66. PubMed ID: 25280367 [TBL] [Abstract][Full Text] [Related]
9. Inhibiting the nucleation of amyloid structure in a huntingtin fragment by targeting α-helix-rich oligomeric intermediates. Mishra R; Jayaraman M; Roland BP; Landrum E; Fullam T; Kodali R; Thakur AK; Arduini I; Wetzel R J Mol Biol; 2012 Feb; 415(5):900-17. PubMed ID: 22178478 [TBL] [Abstract][Full Text] [Related]
10. Unraveling the Molecular Complexity of N-Terminus Huntingtin Oligomers: Insights into Polymorphic Structures. Nanajkar N; Sahoo A; Matysiak S J Phys Chem B; 2024 Aug; 128(32):7761-7769. PubMed ID: 39092631 [TBL] [Abstract][Full Text] [Related]
11. Structure and Dynamics of the Huntingtin Exon-1 N-Terminus: A Solution NMR Perspective. Baias M; Smith PE; Shen K; Joachimiak LA; Żerko S; Koźmiński W; Frydman J; Frydman L J Am Chem Soc; 2017 Jan; 139(3):1168-1176. PubMed ID: 28085263 [TBL] [Abstract][Full Text] [Related]
12. Investigating Mutations to Reduce Huntingtin Aggregation by Increasing Htt-N-Terminal Stability and Weakening Interactions with PolyQ Domain. Smaoui MR; Mazza-Anthony C; Waldispühl J Comput Math Methods Med; 2016; 2016():6247867. PubMed ID: 28096892 [TBL] [Abstract][Full Text] [Related]
13. The possible structural models for polyglutamine aggregation: a molecular dynamics simulations study. Zhou ZL; Zhao JH; Liu HL; Wu JW; Liu KT; Chuang CK; Tsai WB; Ho Y J Biomol Struct Dyn; 2011 Apr; 28(5):743-58. PubMed ID: 21294586 [TBL] [Abstract][Full Text] [Related]
14. Study of the aggregation mechanism of polyglutamine peptides using replica exchange molecular dynamics simulations. Nakano M; Ebina K; Tanaka S J Mol Model; 2013 Apr; 19(4):1627-39. PubMed ID: 23288093 [TBL] [Abstract][Full Text] [Related]
15. Aggregation landscapes of Huntingtin exon 1 protein fragments and the critical repeat length for the onset of Huntington's disease. Chen M; Wolynes PG Proc Natl Acad Sci U S A; 2017 Apr; 114(17):4406-4411. PubMed ID: 28400517 [TBL] [Abstract][Full Text] [Related]
16. Molecular dynamics simulation study on the structural stabilities of polyglutamine peptides. Ogawa H; Nakano M; Watanabe H; Starikov EB; Rothstein SM; Tanaka S Comput Biol Chem; 2008 Apr; 32(2):102-10. PubMed ID: 18243803 [TBL] [Abstract][Full Text] [Related]
17. Transformation between α-helix and β-sheet structures of one and two polyglutamine peptides in explicit water molecules by replica-exchange molecular dynamics simulations. Chiang HL; Chen CJ; Okumura H; Hu CK J Comput Chem; 2014 Jul; 35(19):1430-7. PubMed ID: 24831733 [TBL] [Abstract][Full Text] [Related]
18. The emerging role of the first 17 amino acids of huntingtin in Huntington's disease. Arndt JR; Chaibva M; Legleiter J Biomol Concepts; 2015 Mar; 6(1):33-46. PubMed ID: 25741791 [TBL] [Abstract][Full Text] [Related]
19. Solid-State Nuclear Magnetic Resonance on the Static and Dynamic Domains of Huntingtin Exon-1 Fibrils. Isas JM; Langen R; Siemer AB Biochemistry; 2015 Jun; 54(25):3942-9. PubMed ID: 26020223 [TBL] [Abstract][Full Text] [Related]
20. The polyglutamine domain is the primary driver of seeding in huntingtin aggregation. Skeens A; Siriwardhana C; Massinople SE; Wunder MM; Ellis ZL; Keith KM; Girman T; Frey SL; Legleiter J PLoS One; 2024; 19(3):e0298323. PubMed ID: 38483973 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]