These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

366 related articles for article (PubMed ID: 22978855)

  • 21. Unified modeling of turbulence effects on sound propagation.
    Cheinet S; Ehrhardt L; Juvé D; Blanc-Benon P
    J Acoust Soc Am; 2012 Oct; 132(4):2198-209. PubMed ID: 23039416
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An iterative method to solve acoustic scattering problems using a boundary integral equation.
    Rao SM
    J Acoust Soc Am; 2011 Oct; 130(4):1792-8. PubMed ID: 21973332
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A $k$ -Space Pseudospectral Method for Elastic Wave Propagation in Heterogeneous Anisotropic Media.
    Firouzi K; Khuri-Yakub BT
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Apr; 64(4):749-760. PubMed ID: 28092534
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Numerical modeling of the sound propagation through a rarefied gas in a semi-infinite space on the basis of linearized kinetic equation.
    Sharipov F; Kalempa D
    J Acoust Soc Am; 2008 Oct; 124(4):1993-2001. PubMed ID: 19062839
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Computationally efficient parabolic equation solutions to seismo-acoustic problems involving thin or low-shear elastic layers.
    Metzler AM; Collis JM
    J Acoust Soc Am; 2013 Apr; 133(4):EL268-73. PubMed ID: 23556690
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An immersed boundary computational model for acoustic scattering problems with complex geometries.
    Sun X; Jiang Y; Liang A; Jing X
    J Acoust Soc Am; 2012 Nov; 132(5):3190-9. PubMed ID: 23145603
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Acoustoelastic Lamb wave propagation in biaxially stressed plates.
    Gandhi N; Michaels JE; Lee SJ
    J Acoust Soc Am; 2012 Sep; 132(3):1284-93. PubMed ID: 22978856
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Propagation of acoustic waves in a one-dimensional macroscopically inhomogeneous poroelastic material.
    Gautier G; Kelders L; Groby JP; Dazel O; De Ryck L; Leclaire P
    J Acoust Soc Am; 2011 Sep; 130(3):1390-8. PubMed ID: 21895080
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A displacement-pressure finite element formulation for analyzing the sound transmission in ducted shear flows with finite poroelastic lining.
    Nennig B; Tahar MB; Perrey-Debain E
    J Acoust Soc Am; 2011 Jul; 130(1):42-51. PubMed ID: 21786876
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A nodal discontinuous Galerkin finite element method for nonlinear elastic wave propagation.
    Bou Matar O; Guerder PY; Li Y; Vandewoestyne B; Van Den Abeele K
    J Acoust Soc Am; 2012 May; 131(5):3650-63. PubMed ID: 22559342
    [TBL] [Abstract][Full Text] [Related]  

  • 31. One-dimensional transport equation models for sound energy propagation in long spaces: theory.
    Jing Y; Larsen EW; Xiang N
    J Acoust Soc Am; 2010 Apr; 127(4):2312-22. PubMed ID: 20370013
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Efficient finite element modeling of radiation forces on elastic particles of arbitrary size and geometry.
    Glynne-Jones P; Mishra PP; Boltryk RJ; Hill M
    J Acoust Soc Am; 2013 Apr; 133(4):1885-93. PubMed ID: 23556558
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Numerical and analytical solutions for sound propagation and absorption in porous media at high sound pressure levels.
    Zhang B; Chen T; Zhao Y; Zhang W; Zhu J
    J Acoust Soc Am; 2012 Sep; 132(3):1436-49. PubMed ID: 22978873
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Simulation of shear wave propagation in a soft medium using a pseudospectral time domain method.
    Bastard C; Remeniéras JP; Callé S; Sandrin L
    J Acoust Soc Am; 2009 Oct; 126(4):2108-16. PubMed ID: 19813820
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Simulation of acoustic wave propagation in dispersive media with relaxation losses by using FDTD method with PML absorbing boundary condition.
    Yuan X; Borup D; Wiskin J; Berggren M; Johnson SA
    IEEE Trans Ultrason Ferroelectr Freq Control; 1999; 46(1):14-23. PubMed ID: 18238394
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Influence of scattering, atmospheric refraction, and ground effect on sound propagation through a pine forest.
    Swearingen ME; White MJ
    J Acoust Soc Am; 2007 Jul; 122(1):113-9. PubMed ID: 17614470
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Receiving sensitivity and transmitting voltage response of a fluid loaded spherical piezoelectric transducer with an elastic coating.
    George J; Ebenezer DD; Bhattacharyya SK
    J Acoust Soc Am; 2010 Oct; 128(4):1712-20. PubMed ID: 20968344
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A k-space method for large-scale models of wave propagation in tissue.
    Mast TD; Souriau LP; Liu DL; Tabei M; Nachman AI; Waag RC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2001 Mar; 48(2):341-54. PubMed ID: 11370348
    [TBL] [Abstract][Full Text] [Related]  

  • 39. One-dimensional transport equation models for sound energy propagation in long spaces: simulations and experiments.
    Jing Y; Xiang N
    J Acoust Soc Am; 2010 Apr; 127(4):2323-31. PubMed ID: 20370014
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Transient wave propagation in the ring stiffened laminated composite cylindrical shells using the method of reverberation ray matrix.
    Liu CC; Li FM; Chen ZB; Yue HH
    J Acoust Soc Am; 2013 Feb; 133(2):770-80. PubMed ID: 23363096
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.