BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 22978891)

  • 1. Asymmetric vibration in a two-layer vocal fold model with left-right stiffness asymmetry: experiment and simulation.
    Zhang Z; Luu TH
    J Acoust Soc Am; 2012 Sep; 132(3):1626-35. PubMed ID: 22978891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characteristics of phonation onset in a two-layer vocal fold model.
    Zhang Z
    J Acoust Soc Am; 2009 Feb; 125(2):1091-102. PubMed ID: 19206884
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Vibration in a self-oscillating vocal fold model with left-right asymmetry in body-layer stiffness.
    Zhang Z
    J Acoust Soc Am; 2010 Nov; 128(5):EL279-85. PubMed ID: 21110539
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dependence of phonation threshold pressure and frequency on vocal fold geometry and biomechanics.
    Zhang Z
    J Acoust Soc Am; 2010 Apr; 127(4):2554-62. PubMed ID: 20370037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acoustic and perceptual effects of changes in body layer stiffness in symmetric and asymmetric vocal fold models.
    Zhang Z; Kreiman J; Gerratt BR; Garellek M
    J Acoust Soc Am; 2013 Jan; 133(1):453-62. PubMed ID: 23297917
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of material anisotropy on vibration at onset in a three-dimensional vocal fold model.
    Zhang Z
    J Acoust Soc Am; 2014 Mar; 135(3):1480-90. PubMed ID: 24606284
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthetic, multi-layer, self-oscillating vocal fold model fabrication.
    Murray PR; Thomson SL
    J Vis Exp; 2011 Dec; (58):. PubMed ID: 22157812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phonation threshold pressure and onset frequency in a two-layer physical model of the vocal folds.
    Mendelsohn AH; Zhang Z
    J Acoust Soc Am; 2011 Nov; 130(5):2961-8. PubMed ID: 22087924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vibratory responses of synthetic, self-oscillating vocal fold models.
    Murray PR; Thomson SL
    J Acoust Soc Am; 2012 Nov; 132(5):3428-38. PubMed ID: 23145623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cause-effect relationship between vocal fold physiology and voice production in a three-dimensional phonation model.
    Zhang Z
    J Acoust Soc Am; 2016 Apr; 139(4):1493. PubMed ID: 27106298
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of level difference between left and right vocal folds on phonation: Physical experiment and theoretical study.
    Tokuda IT; Shimamura R
    J Acoust Soc Am; 2017 Aug; 142(2):482. PubMed ID: 28863607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synchronized and Desynchronized Dynamics Observed from Physical Models of the Vocal and Ventricular Folds.
    Matsumoto T; Kanaya M; Matsushima D; Han C; Tokuda IT
    J Voice; 2024 May; 38(3):572-584. PubMed ID: 34903395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of asymmetric stiffness on the structural and aerodynamic response of synthetic vocal fold models.
    Pickup BA; Thomson SL
    J Biomech; 2009 Oct; 42(14):2219-25. PubMed ID: 19664777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vocal fold contact pressure in a three-dimensional body-cover phonation model.
    Zhang Z
    J Acoust Soc Am; 2019 Jul; 146(1):256. PubMed ID: 31370600
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of vocal fold stiffness on voice production in a three-dimensional body-cover phonation model.
    Zhang Z
    J Acoust Soc Am; 2017 Oct; 142(4):2311. PubMed ID: 29092586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A finite element study on the cause of vocal fold vertical stiffness variation.
    Geng B; Xue Q; Zheng X
    J Acoust Soc Am; 2017 Apr; 141(4):EL351. PubMed ID: 28464635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Asymmetric airflow and vibration induced by the Coanda effect in a symmetric model of the vocal folds.
    Tao C; Zhang Y; Hottinger DG; Jiang JJ
    J Acoust Soc Am; 2007 Oct; 122(4):2270-8. PubMed ID: 17902863
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Validation of theoretical models of phonation threshold pressure with data from a vocal fold mechanical replica.
    Lucero JC; Van Hirtum A; Ruty N; Cisonni J; Pelorson X
    J Acoust Soc Am; 2009 Feb; 125(2):632-5. PubMed ID: 19206840
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensitivity of vocal fold vibratory modes to their three-layer structure: implications for computational modeling of phonation.
    Xue Q; Zheng X; Bielamowicz S; Mittal R
    J Acoust Soc Am; 2011 Aug; 130(2):965-76. PubMed ID: 21877809
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of flow separation location on phonation onset.
    Zhang Z
    J Acoust Soc Am; 2008 Sep; 124(3):1689-94. PubMed ID: 19045659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.