These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 22978910)

  • 1. Cancellous bone fast and slow waves obtained with Bayesian probability theory correlate with porosity from computed tomography.
    Hoffman JJ; Nelson AM; Holland MR; Miller JG
    J Acoust Soc Am; 2012 Sep; 132(3):1830-7. PubMed ID: 22978910
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inverse problems in cancellous bone: estimation of the ultrasonic properties of fast and slow waves using Bayesian probability theory.
    Anderson CC; Bauer AQ; Holland MR; Pakula M; Laugier P; Bretthorst GL; Miller JG
    J Acoust Soc Am; 2010 Nov; 128(5):2940-8. PubMed ID: 21110589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Estimation of fast and slow wave properties in cancellous bone using Prony's method and curve fitting.
    Wear KA
    J Acoust Soc Am; 2013 Apr; 133(4):2490-501. PubMed ID: 23556613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conventional, Bayesian, and Modified Prony's methods for characterizing fast and slow waves in equine cancellous bone.
    Groopman AM; Katz JI; Holland MR; Fujita F; Matsukawa M; Mizuno K; Wear KA; Miller JG
    J Acoust Soc Am; 2015 Aug; 138(2):594-604. PubMed ID: 26328678
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of porosity distribution in the propagation direction on ultrasound waves through cancellous bone.
    Hosokawa A
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Jun; 57(6):1320-8. PubMed ID: 20529708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Ultrasonic wave propagation characteristics of cancellous bone].
    Otani T
    Clin Calcium; 2004 Dec; 14(12):69-75. PubMed ID: 15577177
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro acoustic waves propagation in human and bovine cancellous bone.
    Cardoso L; Teboul F; Sedel L; Oddou C; Meunier A
    J Bone Miner Res; 2003 Oct; 18(10):1803-12. PubMed ID: 14584891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cancellous bone analysis with modified least squares Prony's method and chirp filter: phantom experiments and simulation.
    Wear KA
    J Acoust Soc Am; 2010 Oct; 128(4):2191-203. PubMed ID: 20968389
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrasonic wave propagation in human cancellous bone: application of Biot theory.
    Fellah ZE; Chapelon JY; Berger S; Lauriks W; Depollier C
    J Acoust Soc Am; 2004 Jul; 116(1):61-73. PubMed ID: 15295965
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Slow and fast ultrasonic wave detection improvement in human trabecular bones using Golay code modulation.
    Lashkari B; Manbachi A; Mandelis A; Cobbold RS
    J Acoust Soc Am; 2012 Sep; 132(3):EL222-8. PubMed ID: 22979836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of charge density on the velocity and attenuation of ultrasound waves in human cancellous bone.
    Yoon YJ
    J Biomech; 2018 Oct; 79():54-57. PubMed ID: 30122518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Time-domain separation of interfering waves in cancellous bone using bandlimited deconvolution: simulation and phantom study.
    Wear KA
    J Acoust Soc Am; 2014 Apr; 135(4):2102-12. PubMed ID: 25235007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast decomposition of two ultrasound longitudinal waves in cancellous bone using a phase rotation parameter for bone quality assessment: Simulation study.
    Taki H; Nagatani Y; Matsukawa M; Kanai H; Izumi SI
    J Acoust Soc Am; 2017 Oct; 142(4):2322. PubMed ID: 29092537
    [TBL] [Abstract][Full Text] [Related]  

  • 14. What kind of waves are measured in trabecular bone?
    Pakula M
    Ultrasonics; 2022 Jul; 123():106692. PubMed ID: 35176689
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrasonic characterization of human cancellous bone using the Biot theory: inverse problem.
    Sebaa N; Fellah ZE; Fellah M; Ogam E; Wirgin A; Mitri FG; Depollier C; Lauriks W
    J Acoust Soc Am; 2006 Oct; 120(4):1816-24. PubMed ID: 17069280
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The non-linear relationship between BUA and porosity in cancellous bone.
    Hodgskinson R; Njeh CF; Whitehead MA; Langton CM
    Phys Med Biol; 1996 Nov; 41(11):2411-20. PubMed ID: 8938035
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation of critical and viscous frequencies for Biot theory in cancellous bone.
    Hughes ER; Leighton TG; Petley GW; White PR; Chivers RC
    Ultrasonics; 2003 Jul; 41(5):365-8. PubMed ID: 12788218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fast characterization of two ultrasound longitudinal waves in cancellous bone using an adaptive beamforming technique.
    Taki H; Nagatani Y; Matsukawa M; Mizuno K; Sato T
    J Acoust Soc Am; 2015 Apr; 137(4):1683-92. PubMed ID: 25920821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A multiscale poromicromechanical approach to wave propagation and attenuation in bone.
    Morin C; Hellmich C
    Ultrasonics; 2014 Jul; 54(5):1251-69. PubMed ID: 24457030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bayesian estimation of the underlying bone properties from mixed fast and slow mode ultrasonic signals.
    Marutyan KR; Bretthorst GL; Miller JG
    J Acoust Soc Am; 2007 Jan; 121(1):EL8-15. PubMed ID: 17297820
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.