These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 22979869)

  • 1. Effects of 2 nm size added heterogeneity on non-exponential dielectric response, and the dynamic heterogeneity view of molecular liquids.
    Johari GP; Khouri J
    J Chem Phys; 2012 Sep; 137(10):104502. PubMed ID: 22979869
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Note: Effects of adding a viscosity-increasing 2 nm-size molecule on dielectric relaxation features and the dynamic heterogeneity view.
    Khouri J; Johari GP
    J Chem Phys; 2013 May; 138(19):196101. PubMed ID: 23697443
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanostructures and surface hydrophobicity of epoxy thermosets containing hepta(3,3,3-trifluropropyl) polyhedral oligomeric silsesquioxane-capped poly(hydroxyether of bisphenol A) telechelics.
    Zeng K; Wang L; Zheng S
    J Colloid Interface Sci; 2011 Nov; 363(1):250-60. PubMed ID: 21767848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bulk and surface assembly of branched amphiphilic polyhedral oligomer silsesquioxane compounds.
    Gunawidjaja R; Huang F; Gumenna M; Klimenko N; Nunnery GA; Shevchenko V; Tannenbaum R; Tsukruk VV
    Langmuir; 2009 Jan; 25(2):1196-209. PubMed ID: 19090655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low-k periodic mesoporous organosilica with air walls: POSS-PMO.
    Seino M; Wang W; Lofgreen JE; Puzzo DP; Manabe T; Ozin GA
    J Am Chem Soc; 2011 Nov; 133(45):18082-5. PubMed ID: 22029262
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-exponential nature of calorimetric and other relaxations: effects of 2 nm-size solutes, loss of translational diffusion, isomer specificity, and sample size.
    Johari GP; Khouri J
    J Chem Phys; 2013 Mar; 138(12):12A511. PubMed ID: 23556762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The enhanced encapsulation capacity of polyhedral oligomeric silsesquioxane-based copolymers for the fabrication of electrospun core/shell fibers.
    Bauer AJ; Zeng T; Liu J; Uthaisar C; Li B
    Macromol Rapid Commun; 2014 Apr; 35(7):715-20. PubMed ID: 24615764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics of polymerization of a liquid with nanosize structural heterogeneities.
    Khouri J; Johari GP
    J Phys Chem B; 2011 Nov; 115(46):13489-501. PubMed ID: 21962116
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformation transformation determined by different self-assembled phases in a DNA complex with cationic polyhedral oligomeric silsesquioxane lipid.
    Cui L; Chen D; Zhu L
    ACS Nano; 2008 May; 2(5):921-7. PubMed ID: 19206489
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unique rodlike surface morphologies in trisilanolcyclohexyl polyhedral oligomeric silsesquioxane films.
    Deng J; Farmer-Creely CE; Viers BD; Esker AR
    Langmuir; 2004 Mar; 20(7):2527-30. PubMed ID: 15835117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Viscoelastic Responses of Polyhedral Oligosilsesquioxane Reinforced Epoxy Systems.
    Lee A; Lichtenhan JD
    Macromolecules; 1998 Jul; 31(15):4970-4. PubMed ID: 9680436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On a novel catalytic system based on electrospun nanofibers and M-POSS.
    Cozza ES; Bruzzo V; Carniato F; Marsano E; Monticelli O
    ACS Appl Mater Interfaces; 2012 Feb; 4(2):604-7. PubMed ID: 22283374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the decoupling of relaxation modes in a molecular liquid caused by isothermal introduction of 2 nm structural inhomogeneities.
    Ueno K; Angell CA
    J Phys Chem B; 2011 Dec; 115(48):13994-9. PubMed ID: 21728285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sorption of dimethyl methylphosphonate within Langmuir-Blodgett films of trisilanolphenyl polyhedral oligomeric silsesquioxane.
    Ferguson-McPherson MK; Low ER; Esker AR; Morris JR
    J Phys Chem B; 2005 Oct; 109(40):18914-20. PubMed ID: 16853435
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facile preparation of silica-supported Ti catalysts effective for the epoxidation of cyclooctene using Ti-bridged silsesquioxanes.
    Wada K; Sakugawa S; Inoue M
    Chem Commun (Camb); 2012 Aug; 48(64):7991-3. PubMed ID: 22763854
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cholesteric liquid crystal devices with nanoparticle aggregation.
    Jeng SC; Hwang SJ; Hung YH; Chen SC
    Opt Express; 2010 Oct; 18(21):22572-7. PubMed ID: 20941154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluoroalkylated silicon-containing surfaces-estimation of solid-surface energy.
    Chhatre SS; Guardado JO; Moore BM; Haddad TS; Mabry JM; McKinley GH; Cohen RE
    ACS Appl Mater Interfaces; 2010 Dec; 2(12):3544-54. PubMed ID: 21067201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A nanocage for nanomedicine: polyhedral oligomeric silsesquioxane (POSS).
    Ghanbari H; Cousins BG; Seifalian AM
    Macromol Rapid Commun; 2011 Jul; 32(14):1032-46. PubMed ID: 21598339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. POSS dendrimers constructed from a 1 → 7 branching monomer.
    Wang X; Yang Y; Gao P; Li D; Yang F; Shen H; Guo H; Xu F; Wu D
    Chem Commun (Camb); 2014 Jun; 50(46):6126-9. PubMed ID: 24776952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of thermodynamic properties of poly(methyl methacrylate-co-n-butylacrylate-co-cyclopentyl styryl-polyhedral oligomeric silsesquioxane) by inverse gas chromatography.
    Zou QC; Zhang SL; Wang SM; Wu LM
    J Chromatogr A; 2006 Oct; 1129(2):255-61. PubMed ID: 16846607
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.