These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 22979891)

  • 1. Dynamic mechanisms of generation of oscillatory cluster patterns in a globally coupled chemical system.
    Rotstein HG; Wu H
    J Chem Phys; 2012 Sep; 137(10):104908. PubMed ID: 22979891
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Swing, release, and escape mechanisms contribute to the generation of phase-locked cluster patterns in a globally coupled FitzHugh-Nagumo model.
    Rotstein HG; Wu H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 2):066207. PubMed ID: 23368024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oscillatory cluster patterns in a homogeneous chemical system with global feedback.
    Vanag VK; Yang L; Dolnik M; Zhabotinsky AM; Epstein IR
    Nature; 2000 Jul; 406(6794):389-91. PubMed ID: 10935631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emergence of localized patterns in globally coupled networks of relaxation oscillators with heterogeneous connectivity.
    Leiser RJ; Rotstein HG
    Phys Rev E; 2017 Aug; 96(2-1):022303. PubMed ID: 28950537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oscillatory clusters in a model of the photosensitive belousov-zhabotinsky reaction system with global feedback.
    Yang L; Dolnik M; Zhabotinsky AM; Epstein IR
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Nov; 62(5 Pt A):6414-20. PubMed ID: 11101977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resonance tongues in a system of globally coupled FitzHugh-Nagumo oscillators with time-periodic coupling strength.
    Bîrzu A; Krischer K
    Chaos; 2010 Dec; 20(4):043114. PubMed ID: 21198084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Competition between global feedback and diffusion in coupled Belousov-Zhabotinsky oscillators.
    Ohno K; Ogawa T; Suematsu NJ
    Phys Rev E; 2019 Jan; 99(1-1):012208. PubMed ID: 30780237
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stochastic phase dynamics and noise-induced mixed-mode oscillations in coupled oscillators.
    Yu N; Kuske R; Li YX
    Chaos; 2008 Mar; 18(1):015112. PubMed ID: 18377093
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase and amplitude dynamics in large systems of coupled oscillators: growth heterogeneity, nonlinear frequency shifts, and cluster states.
    Lee WS; Ott E; Antonsen TM
    Chaos; 2013 Sep; 23(3):033116. PubMed ID: 24089952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of a 1D array of inhibitory coupled chemical oscillators in microdroplets with global negative feedback.
    Proskurkin IS; Vanag VK
    Phys Chem Chem Phys; 2018 Jun; 20(23):16126-16137. PubMed ID: 29855029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bromide control, bifurcation and activation in the Belousov-Zhabotinsky reaction.
    Hastings HM; Sobel SG; Field RJ; Bongiovi D; Burke B; Richford D; Finzel K; Garuthara M
    J Phys Chem A; 2008 May; 112(21):4715-8. PubMed ID: 18459756
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complex dynamics in the Oregonator model with linear delayed feedback.
    Sriram K; Bernard S
    Chaos; 2008 Jun; 18(2):023126. PubMed ID: 18601493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Complex mixed-mode oscillatory patterns in a periodically forced excitable Belousov-Zhabotinsky reaction model.
    Español MI; Rotstein HG
    Chaos; 2015 Jun; 25(6):064612. PubMed ID: 26117137
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Universal occurrence of the phase-flip bifurcation in time-delay coupled systems.
    Prasad A; Dana SK; Karnatak R; Kurths J; Blasius B; Ramaswamy R
    Chaos; 2008 Jun; 18(2):023111. PubMed ID: 18601478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oscillatory clusters in the periodically illuminated, spatially extended Belousov-Zhabotinsky reaction.
    Vanag VK; Zhabotinsky AM; Epstein IR
    Phys Rev Lett; 2001 Jan; 86(3):552-5. PubMed ID: 11177878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Complex oscillation modes in the Belousov-Zhabotinsky reaction by weak diffusive coupling.
    Lenk C; Einax M; Köhler JM; Maass P
    Phys Rev E; 2019 Feb; 99(2-1):022202. PubMed ID: 30934246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resonant and nonresonant patterns in forced oscillators.
    Marts B; Hagberg A; Meron E; Lin AL
    Chaos; 2006 Sep; 16(3):037113. PubMed ID: 17014247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase wave between two oscillators in the photosensitive Belousov-Zhabotinsky reaction depending on the difference in the illumination time.
    Nakata S; Kashima K; Kitahata H; Mori Y
    J Phys Chem A; 2010 Sep; 114(34):9124-9. PubMed ID: 20695485
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Canard explosion of limit cycles in templator models of self-replication mechanisms.
    Brøns M
    J Chem Phys; 2011 Apr; 134(14):144105. PubMed ID: 21495740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A hierarchy of global coupling induced cluster patterns during the oscillatory H2-electrooxidation reaction on a Pt ring-electrode.
    Varela H; Beta C; Bonnefont A; Krischer K
    Phys Chem Chem Phys; 2005 Jun; 7(12):2429-39. PubMed ID: 15962026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.