BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1227 related articles for article (PubMed ID: 22980980)

  • 41. Cryo-EM structures of the human GATOR1-Rag-Ragulator complex reveal a spatial-constraint regulated GAP mechanism.
    Egri SB; Ouch C; Chou HT; Yu Z; Song K; Xu C; Shen K
    Mol Cell; 2022 May; 82(10):1836-1849.e5. PubMed ID: 35338845
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Amino acids and mTORC1: from lysosomes to disease.
    Efeyan A; Zoncu R; Sabatini DM
    Trends Mol Med; 2012 Sep; 18(9):524-33. PubMed ID: 22749019
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Control of gasdermin D oligomerization and pyroptosis by the Ragulator-Rag-mTORC1 pathway.
    Evavold CL; Hafner-Bratkovič I; Devant P; D'Andrea JM; Ngwa EM; Boršić E; Doench JG; LaFleur MW; Sharpe AH; Thiagarajah JR; Kagan JC
    Cell; 2021 Aug; 184(17):4495-4511.e19. PubMed ID: 34289345
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Cystinosin is a Component of the Vacuolar H+-ATPase-Ragulator-Rag Complex Controlling Mammalian Target of Rapamycin Complex 1 Signaling.
    Andrzejewska Z; Nevo N; Thomas L; Chhuon C; Bailleux A; Chauvet V; Courtoy PJ; Chol M; Guerrera IC; Antignac C
    J Am Soc Nephrol; 2016 Jun; 27(6):1678-88. PubMed ID: 26449607
    [TBL] [Abstract][Full Text] [Related]  

  • 45. dRAGging amino acid-mTORC1 signaling by SH3BP4.
    Kim YM; Kim DH
    Mol Cells; 2013 Jan; 35(1):1-6. PubMed ID: 23274731
    [TBL] [Abstract][Full Text] [Related]  

  • 46. RagA, an mTORC1 activator, interacts with a hedgehog signaling protein, WDR35/IFT121.
    Sekiguchi T; Furuno N; Ishii T; Hirose E; Sekiguchi F; Wang Y; Kobayashi H
    Genes Cells; 2019 Feb; 24(2):151-161. PubMed ID: 30570184
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Amino Acid- and Insulin-Induced Activation of mTORC1 in Neonatal Piglet Skeletal Muscle Involves Sestin2-GATOR2, Rag A/C-mTOR, and RHEB-mTOR Complex Formation.
    Suryawan A; Davis TA
    J Nutr; 2018 Jun; 148(6):825-833. PubMed ID: 29796625
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Rag GTPases mediate amino acid-dependent recruitment of TFEB and MITF to lysosomes.
    Martina JA; Puertollano R
    J Cell Biol; 2013 Feb; 200(4):475-91. PubMed ID: 23401004
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Rheb and Rags come together at the lysosome to activate mTORC1.
    Groenewoud MJ; Zwartkruis FJ
    Biochem Soc Trans; 2013 Aug; 41(4):951-5. PubMed ID: 23863162
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A nutrient-induced affinity switch controls mTORC1 activation by its Rag GTPase-Ragulator lysosomal scaffold.
    Lawrence RE; Cho KF; Rappold R; Thrun A; Tofaute M; Kim DJ; Moldavski O; Hurley JH; Zoncu R
    Nat Cell Biol; 2018 Sep; 20(9):1052-1063. PubMed ID: 30061680
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Amino Acids Enhance Polyubiquitination of Rheb and Its Binding to mTORC1 by Blocking Lysosomal ATXN3 Deubiquitinase Activity.
    Yao Y; Hong S; Ikeda T; Mori H; MacDougald OA; Nada S; Okada M; Inoki K
    Mol Cell; 2020 Nov; 80(3):437-451.e6. PubMed ID: 33157014
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Tissue-specific expression differences in Ras-related GTP-binding proteins in male rats.
    Kincheloe GN; Roberson PA; Jefferson LS; Kimball SR
    Physiol Rep; 2024 Feb; 12(3):e15928. PubMed ID: 38296461
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Rag GTPases are cardioprotective by regulating lysosomal function.
    Kim YC; Park HW; Sciarretta S; Mo JS; Jewell JL; Russell RC; Wu X; Sadoshima J; Guan KL
    Nat Commun; 2014 Jul; 5():4241. PubMed ID: 24980141
    [TBL] [Abstract][Full Text] [Related]  

  • 54. SLC38A9 is a component of the lysosomal amino acid sensing machinery that controls mTORC1.
    Rebsamen M; Pochini L; Stasyk T; de Araújo ME; Galluccio M; Kandasamy RK; Snijder B; Fauster A; Rudashevskaya EL; Bruckner M; Scorzoni S; Filipek PA; Huber KV; Bigenzahn JW; Heinz LX; Kraft C; Bennett KL; Indiveri C; Huber LA; Superti-Furga G
    Nature; 2015 Mar; 519(7544):477-81. PubMed ID: 25561175
    [TBL] [Abstract][Full Text] [Related]  

  • 55. C7orf59/LAMTOR4 phosphorylation and structural flexibility modulate Ragulator assembly.
    Rasheed N; Lima TB; Mercaldi GF; Nascimento AFZ; Silva ALS; Righetto GL; Bar-Peled L; Shen K; Sabatini DM; Gozzo FC; Aparicio R; Smetana JHC
    FEBS Open Bio; 2019 Sep; 9(9):1589-1602. PubMed ID: 31314152
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Requirement for lysosomal localization of mTOR for its activation differs between leucine and other amino acids.
    Averous J; Lambert-Langlais S; Carraro V; Gourbeyre O; Parry L; B'Chir W; Muranishi Y; Jousse C; Bruhat A; Maurin AC; Proud CG; Fafournoux P
    Cell Signal; 2014 Sep; 26(9):1918-27. PubMed ID: 24793303
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Class III PI-3-kinase activates phospholipase D in an amino acid-sensing mTORC1 pathway.
    Yoon MS; Du G; Backer JM; Frohman MA; Chen J
    J Cell Biol; 2011 Oct; 195(3):435-47. PubMed ID: 22024166
    [TBL] [Abstract][Full Text] [Related]  

  • 58. KICSTOR recruits GATOR1 to the lysosome and is necessary for nutrients to regulate mTORC1.
    Wolfson RL; Chantranupong L; Wyant GA; Gu X; Orozco JM; Shen K; Condon KJ; Petri S; Kedir J; Scaria SM; Abu-Remaileh M; Frankel WN; Sabatini DM
    Nature; 2017 Mar; 543(7645):438-442. PubMed ID: 28199306
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [New structures of mTORC1: Focus on Rag GTPases].
    Nawrotek A; Cherfils J
    Med Sci (Paris); 2021 Apr; 37(4):372-378. PubMed ID: 33908855
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Redundant electrostatic interactions between GATOR1 and the Rag GTPase heterodimer drive efficient amino acid sensing in human cells.
    Doxsey DD; Tettoni SD; Egri SB; Shen K
    J Biol Chem; 2023 Jul; 299(7):104880. PubMed ID: 37269949
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 62.