BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

852 related articles for article (PubMed ID: 22980985)

  • 1. Long-distance growth and connectivity of neural stem cells after severe spinal cord injury.
    Lu P; Wang Y; Graham L; McHale K; Gao M; Wu D; Brock J; Blesch A; Rosenzweig ES; Havton LA; Zheng B; Conner JM; Marsala M; Tuszynski MH
    Cell; 2012 Sep; 150(6):1264-73. PubMed ID: 22980985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Promotion of survival and differentiation of neural stem cells with fibrin and growth factor cocktails after severe spinal cord injury.
    Lu P; Graham L; Wang Y; Wu D; Tuszynski M
    J Vis Exp; 2014 Jul; (89):e50641. PubMed ID: 25145787
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Partial restoration of cardiovascular function by embryonic neural stem cell grafts after complete spinal cord transection.
    Hou S; Tom VJ; Graham L; Lu P; Blesch A
    J Neurosci; 2013 Oct; 33(43):17138-49. PubMed ID: 24155317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Grafted neural progenitors integrate and restore synaptic connectivity across the injured spinal cord.
    Bonner JF; Connors TM; Silverman WF; Kowalski DP; Lemay MA; Fischer I
    J Neurosci; 2011 Mar; 31(12):4675-86. PubMed ID: 21430166
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A re-assessment of long distance growth and connectivity of neural stem cells after severe spinal cord injury.
    Sharp KG; Yee KM; Steward O
    Exp Neurol; 2014 Jul; 257():186-204. PubMed ID: 24747827
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of growth factors and soluble Nogo-66 receptor protein on transplanted neural stem/progenitor survival and axonal regeneration after complete transection of rat spinal cord.
    Guo X; Zahir T; Mothe A; Shoichet MS; Morshead CM; Katayama Y; Tator CH
    Cell Transplant; 2012; 21(6):1177-97. PubMed ID: 22236767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stem cell transplantation for spinal cord injury repair.
    Lu P
    Prog Brain Res; 2017; 231():1-32. PubMed ID: 28554393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rewiring the spinal cord: Direct and indirect strategies.
    Dell'Anno MT; Strittmatter SM
    Neurosci Lett; 2017 Jun; 652():25-34. PubMed ID: 28007647
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Grafting Embryonic Raphe Neurons Reestablishes Serotonergic Regulation of Sympathetic Activity to Improve Cardiovascular Function after Spinal Cord Injury.
    Hou S; Saltos TM; Mironets E; Trueblood CT; Connors TM; Tom VJ
    J Neurosci; 2020 Feb; 40(6):1248-1264. PubMed ID: 31896670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transplantation of tissue engineering neural network and formation of neuronal relay into the transected rat spinal cord.
    Lai BQ; Che MT; Du BL; Zeng X; Ma YH; Feng B; Qiu XC; Zhang K; Liu S; Shen HY; Wu JL; Ling EA; Zeng YS
    Biomaterials; 2016 Dec; 109():40-54. PubMed ID: 27665078
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Myelination of axons emerging from neural progenitor grafts after spinal cord injury.
    Hunt M; Lu P; Tuszynski MH
    Exp Neurol; 2017 Oct; 296():69-73. PubMed ID: 28698030
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human neural stem cells promote corticospinal axons regeneration and synapse reformation in injured spinal cord of rats.
    Liang P; Jin LH; Liang T; Liu EZ; Zhao SG
    Chin Med J (Engl); 2006 Aug; 119(16):1331-8. PubMed ID: 16934177
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuroectodermal Stem Cells Grafted into the Injured Spinal Cord Induce Both Axonal Regeneration and Morphological Restoration via Multiple Mechanisms.
    Pajer K; Bellák T; Redl H; Nógrádi A
    J Neurotrauma; 2019 Nov; 36(21):2977-2990. PubMed ID: 31111776
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Donor mesenchymal stem cell-derived neural-like cells transdifferentiate into myelin-forming cells and promote axon regeneration in rat spinal cord transection.
    Qiu XC; Jin H; Zhang RY; Ding Y; Zeng X; Lai BQ; Ling EA; Wu JL; Zeng YS
    Stem Cell Res Ther; 2015 May; 6(1):105. PubMed ID: 26012641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of ectopic colonies that form in widespread areas of the nervous system with neural stem cell transplants into the site of a severe spinal cord injury.
    Steward O; Sharp KG; Yee KM; Hatch MN; Bonner JF
    J Neurosci; 2014 Oct; 34(42):14013-21. PubMed ID: 25319698
    [TBL] [Abstract][Full Text] [Related]  

  • 16. BDNF guides neural stem cell-derived axons to ventral interneurons and motor neurons after spinal cord injury.
    Li Y; Tran A; Graham L; Brock J; Tuszynski MH; Lu P
    Exp Neurol; 2023 Jan; 359():114259. PubMed ID: 36309123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Matrix inclusion within synthetic hydrogel guidance channels improves specific supraspinal and local axonal regeneration after complete spinal cord transection.
    Tsai EC; Dalton PD; Shoichet MS; Tator CH
    Biomaterials; 2006 Jan; 27(3):519-33. PubMed ID: 16099035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural Stem Cells: Promoting Axonal Regeneration and Spinal Cord Connectivity.
    de Freria CM; Van Niekerk E; Blesch A; Lu P
    Cells; 2021 Nov; 10(12):. PubMed ID: 34943804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Repair of spinal cord injury with neuronal relays: From fetal grafts to neural stem cells.
    Bonner JF; Steward O
    Brain Res; 2015 Sep; 1619():115-23. PubMed ID: 25591483
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Origins of Neural Progenitor Cell-Derived Axons Projecting Caudally after Spinal Cord Injury.
    Lu P; Gomes-Leal W; Anil S; Dobkins G; Huie JR; Ferguson AR; Graham L; Tuszynski M
    Stem Cell Reports; 2019 Jul; 13(1):105-114. PubMed ID: 31204300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 43.