These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 22981285)

  • 21. Chemical oxidation of hexachlorocyclohexanes (HCHs) in contaminated soils.
    Usman M; Tascone O; Faure P; Hanna K
    Sci Total Environ; 2014 Apr; 476-477():434-9. PubMed ID: 24486498
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Removal of hexabromocyclododecane by carboxymethyl cellulose stabilized Fe and Ni/Fe bimetallic nanoparticles: The particle stability and reactivity in water.
    Tso CP; Kuo DTF; Shih YH
    Chemosphere; 2020 Jul; 250():126155. PubMed ID: 32105853
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Field assessment of carboxymethyl cellulose stabilized iron nanoparticles for in situ destruction of chlorinated solvents in source zones.
    He F; Zhao D; Paul C
    Water Res; 2010 Apr; 44(7):2360-70. PubMed ID: 20106501
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A novel pathway for the biodegradation of gamma-hexachlorocyclohexane by a Xanthomonas sp. strain ICH12.
    Manickam N; Misra R; Mayilraj S
    J Appl Microbiol; 2007 Jun; 102(6):1468-78. PubMed ID: 17578411
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Kinetics of base-catalyzed dehydrochlorination of hexachlorocyclohexanes: I. Homogeneous systems.
    Ren M; Peng P; Huang W; Liu X
    J Environ Qual; 2006; 35(3):880-8. PubMed ID: 16641325
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biocatalytic dechlorination of lindane by nano-scale particles of Pd(0) deposited on Shewanella oneidensis.
    Mertens B; Blothe C; Windey K; De Windt W; Verstraete W
    Chemosphere; 2007 Jan; 66(1):99-105. PubMed ID: 16797673
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synthesis and characterization of supported polysugar-stabilized palladium nanoparticle catalysts for enhanced hydrodechlorination of trichloroethylene.
    Bacik DB; Zhang M; Zhao D; Roberts CB; Seehra MS; Singh V; Shah N
    Nanotechnology; 2012 Jul; 23(29):294004. PubMed ID: 22743584
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In-situ degradation of soil-sorbed 17β-estradiol using carboxymethyl cellulose stabilized manganese oxide nanoparticles: Column studies.
    Han B; Zhang M; Zhao D
    Environ Pollut; 2017 Apr; 223():238-246. PubMed ID: 28108162
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Distribution of hexachlorocyclohexane isomers in soil samples from a small scale industrial area of Lucknow, North India, associated with lindane production.
    Abhilash PC; Singh N
    Chemosphere; 2008 Oct; 73(6):1011-5. PubMed ID: 18760821
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Immobilization and phytotoxicity of chromium in contaminated soil remediated by CMC-stabilized nZVI.
    Wang Y; Fang Z; Kang Y; Tsang EP
    J Hazard Mater; 2014 Jun; 275():230-7. PubMed ID: 24880637
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reduced transport potential of a palladium-doped zero valent iron nanoparticle in a water saturated loamy sand.
    Basnet M; Di Tommaso C; Ghoshal S; Tufenkji N
    Water Res; 2015 Jan; 68():354-63. PubMed ID: 25462742
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of coating on the environmental applications of zero valent iron nanoparticles: the lindane case.
    San Román I; Galdames A; Alonso ML; Bartolomé L; Vilas JL; Alonso RM
    Sci Total Environ; 2016 Sep; 565():795-803. PubMed ID: 27102275
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Immobilization of selenite in soil and groundwater using stabilized Fe-Mn binary oxide nanoparticles.
    Xie W; Liang Q; Qian T; Zhao D
    Water Res; 2015 Mar; 70():485-94. PubMed ID: 25577492
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Arsenic availability and uptake by edible rape (Brassica campestris L.) grown in contaminated soils spiked with carboxymethyl cellulose-stabilized ferrihydrite nanoparticles.
    Huo L; Huang D; Zeng X; Su S; Wang Y; Bai L; Wu C
    Environ Sci Pollut Res Int; 2018 May; 25(15):15080-15088. PubMed ID: 29557040
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dechlorination of hexachlorocyclohexanes with alkaline 2-propanol and a palladium catalyst.
    Ukisu Y; Miyadera T
    J Hazard Mater; 2005 Jun; 122(1-2):1-6. PubMed ID: 15943923
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of Fe-Pd bimetallic nanoparticles on Sphingomonas sp. PH-07 and a nano-bio hybrid process for triclosan degradation.
    Murugesan K; Bokare V; Jeon JR; Kim EJ; Kim JH; Chang YS
    Bioresour Technol; 2011 May; 102(10):6019-25. PubMed ID: 21429741
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Treatability of hexabromocyclododecane using Pd/Fe nanoparticles in the soil-plant system: Effects of humic acids.
    Le TT; Yoon H; Son MH; Kang YG; Chang YS
    Sci Total Environ; 2019 Nov; 689():444-450. PubMed ID: 31279191
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Application of zerovalent iron (Fe(0)) to enhance degradation of HCHs and DDX in soil from a former organochlorine pesticides manufacturing plant.
    Yang SC; Lei M; Chen TB; Li XY; Liang Q; Ma C
    Chemosphere; 2010 Apr; 79(7):727-32. PubMed ID: 20303568
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Evidence of α-, β- and γ-HCH mixture aerobic degradation by the native actinobacteria Streptomyces sp. M7.
    Sineli PE; Tortella G; Dávila Costa JS; Benimeli CS; Cuozzo SA
    World J Microbiol Biotechnol; 2016 May; 32(5):81. PubMed ID: 27038951
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effects of non-stabilised and Na-carboxymethylcellulose-stabilised iron oxide nanoparticles on remediation of Co-contaminated soils.
    Bidast S; Golchin A; Baybordi A; Zamani A; Naidu R
    Chemosphere; 2020 Dec; 261():128123. PubMed ID: 33113646
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.