These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 22981286)

  • 1. Removal of boron from wastewater by the hydroxyapatite formation reaction using acceleration effect of ammonia.
    Yoshikawa E; Sasaki A; Endo M
    J Hazard Mater; 2012 Oct; 237-238():277-82. PubMed ID: 22981286
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of boron and fluoride in wastewater using Mg-Al layered double hydroxide and Mg-Al oxide.
    Kameda T; Oba J; Yoshioka T
    J Environ Manage; 2017 Mar; 188():58-63. PubMed ID: 27930956
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Adsorption of fluoride ions on a Ca-deficient hydroxyapatite].
    Li L; Zhu ZL; Qiu YL; Zhang H; Zhao JF
    Huan Jing Ke Xue; 2010 Jun; 31(6):1554-9. PubMed ID: 20698272
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Defluoridation chemistry of synthetic hydroxyapatite at nano scale: equilibrium and kinetic studies.
    Sundaram CS; Viswanathan N; Meenakshi S
    J Hazard Mater; 2008 Jun; 155(1-2):206-15. PubMed ID: 18162304
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced fluoride adsorption using Al (III) modified calcium hydroxyapatite.
    Nie Y; Hu C; Kong C
    J Hazard Mater; 2012 Sep; 233-234():194-9. PubMed ID: 22841297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphorus Co-Existing in Water: A New Mechanism to Boost Boron Removal by Calcined Oyster Shell Powder.
    Yang-Zhou CH; Cao JX; Dong SS; Chen SH; Michael RN
    Molecules; 2021 Dec; 27(1):. PubMed ID: 35011286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Precipitation recovery of boron from wastewater by hydrothermal mineralization.
    Itakura T; Sasai R; Itoh H
    Water Res; 2005 Jul; 39(12):2543-8. PubMed ID: 15978646
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stabilization of borate by hot isostatic pressing after co-precipitation with hydroxyapatite using MAP.
    Sasaki K; Hayashi Y; Nakamura T; Guo B; Tian Q
    Chemosphere; 2020 Sep; 254():126860. PubMed ID: 32957280
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A biocompatible and novelly-defined Al-HAP adsorption membrane for highly effective removal of fluoride from drinking water.
    He J; Chen K; Cai X; Li Y; Wang C; Zhang K; Jin Z; Meng F; Wang X; Kong L; Liu J
    J Colloid Interface Sci; 2017 Mar; 490():97-107. PubMed ID: 27870965
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of boron from oilfield wastewater via adsorption with synthetic layered double hydroxides.
    Delazare T; Ferreira LP; Ribeiro NF; Souza MM; Campos JC; Yokoyama L
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(8):923-32. PubMed ID: 24766593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microwave-induced production of boron-doped HAp (B-HAp) and B-HAp coated composite scaffolds.
    Tunçay EÖ; Demirtaş TT; Gümüşderelioğlu M
    J Trace Elem Med Biol; 2017 Mar; 40():72-81. PubMed ID: 28159225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Boron removal from synthetic brines and oilfield produced waters using aluminum electrocoagulation.
    Chen M; Tinner S; Shafer-Peltier K; Randtke S; Dollar O; Peltier E
    Sci Total Environ; 2022 Nov; 848():157733. PubMed ID: 35917961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous immobilization of borate, arsenate, and silicate from geothermal water derived from mining activity by co-precipitation with hydroxyapatite.
    Sasaki K; Hayashi Y; Toshiyuki K; Guo B
    Chemosphere; 2018 Sep; 207():139-146. PubMed ID: 29793025
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydroxyapatite-based sorbents: elaboration, characterization and application for the removal of catechol from the aqueous phase.
    Sebei H; Pham Minh D; Lyczko N; Sharrock P; Nzihou A
    Environ Technol; 2017 Oct; 38(20):2611-2620. PubMed ID: 27937683
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and characterization of hydroxyapatite by microwave heating using CaSO4.2H2O and Ca(OH)2 as calcium source.
    Teoreanu I; Preda M; Melinescu A
    J Mater Sci Mater Med; 2008 Feb; 19(2):517-23. PubMed ID: 17619995
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal of oxyanions from synthetic wastewater via carbonation process of calcium hydroxide: applied and fundamental aspects.
    Montes-Hernandez G; Concha-Lozano N; Renard F; Quirico E
    J Hazard Mater; 2009 Jul; 166(2-3):788-95. PubMed ID: 19135792
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of sulfate from wet FGD wastewater by co-precipitation with calcium hydroxide and sodium aluminate.
    Yu J; Lu J; Kang Y
    Water Sci Technol; 2018 Mar; 77(5-6):1336-1345. PubMed ID: 29528321
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel chemical oxo-precipitation (COP) process for efficient remediation of boron wastewater at room temperature.
    Shih YJ; Liu CH; Lan WC; Huang YH
    Chemosphere; 2014 Sep; 111():232-7. PubMed ID: 24997923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Boron removal from hydraulic fracturing wastewater by aluminum and iron coagulation: Mechanisms and limitations.
    Chorghe D; Sari MA; Chellam S
    Water Res; 2017 Dec; 126():481-487. PubMed ID: 29028491
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism of boron uptake by hydrocalumite calcined at different temperatures.
    Qiu X; Sasaki K; Takaki Y; Hirajima T; Ideta K; Miyawaki J
    J Hazard Mater; 2015 Apr; 287():268-77. PubMed ID: 25661174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.