BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

442 related articles for article (PubMed ID: 22981440)

  • 1. Quantification of red blood cell deformation at high-hematocrit blood flow in microvessels.
    Alizadehrad D; Imai Y; Nakaaki K; Ishikawa T; Yamaguchi T
    J Biomech; 2012 Oct; 45(15):2684-9. PubMed ID: 22981440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-dimensional simulation of red blood cell deformation and lateral migration in microvessels.
    Secomb TW; Styp-Rekowska B; Pries AR
    Ann Biomed Eng; 2007 May; 35(5):755-65. PubMed ID: 17380392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microvascular blood flow resistance: Role of red blood cell migration and dispersion.
    Katanov D; Gompper G; Fedosov DA
    Microvasc Res; 2015 May; 99():57-66. PubMed ID: 25724979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell-free layer and wall shear stress variation in microvessels.
    Yin X; Zhang J
    Biorheology; 2012; 49(4):261-70. PubMed ID: 22836080
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shear stress variation induced by red blood cell motion in microvessel.
    Xiong W; Zhang J
    Ann Biomed Eng; 2010 Aug; 38(8):2649-59. PubMed ID: 20352336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temporal and spatial variations of wall shear stress in the entrance region of microvessels.
    Oulaid O; Zhang J
    J Biomech Eng; 2015 Jun; 137(6):061008. PubMed ID: 25781004
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The cell-free layer in microvascular blood flow.
    Kim S; Ong PK; Yalcin O; Intaglietta M; Johnson PC
    Biorheology; 2009; 46(3):181-9. PubMed ID: 19581726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Disturbed blood flow structuring as critical factor of hemorheological disorders in microcirculation.
    Mchedlishvili G
    Clin Hemorheol Microcirc; 1998 Dec; 19(4):315-25. PubMed ID: 9972669
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Red blood cell migration in microvessels.
    Mansour MH; Bressloff NW; Shearman CP
    Biorheology; 2010; 47(1):73-93. PubMed ID: 20448298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [A quantitative observation of erythrocyte flow dynamics in microvessels of isolated rabbit mesentery].
    Soutani M
    Nihon Seirigaku Zasshi; 1994; 56(6):181-95. PubMed ID: 8078034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetic resonance microscopy determined velocity and hematocrit distributions in a Couette viscometer.
    Cokelet GR; Brown JR; Codd SL; Seymour JD
    Biorheology; 2005; 42(5):385-99. PubMed ID: 16308468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A micro-scale simulation of red blood cell passage through symmetric and asymmetric bifurcated vessels.
    Wang T; Rongin U; Xing Z
    Sci Rep; 2016 Feb; 6():20262. PubMed ID: 26830454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of suspending viscosity on red blood cell dynamics and blood flows in microvessels.
    Zhang J
    Microcirculation; 2011 Oct; 18(7):562-73. PubMed ID: 21624001
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical analysis of a red blood cell flowing through a thin micropore.
    Omori T; Hosaka H; Imai Y; Yamaguchi T; Ishikawa T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):013008. PubMed ID: 24580321
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Blood flow and cell-free layer in microvessels.
    Fedosov DA; Caswell B; Popel AS; Karniadakis GE
    Microcirculation; 2010 Nov; 17(8):615-28. PubMed ID: 21044216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic structure of blood flow in microvessels.
    Mchedlishvili G
    Microcirc Endothelium Lymphatics; 1991; 7(1-3):3-49. PubMed ID: 1762608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of blood flow: modeling of Fåhraeus and Fåhraeus-Lindqvist effects using a shear-induced red blood cell migration model.
    Chebbi R
    J Biol Phys; 2018 Dec; 44(4):591-603. PubMed ID: 30219980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rheology in the microcirculation in normal and low flow states.
    Chien S
    Adv Shock Res; 1982; 8():71-80. PubMed ID: 7136948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A fluid-particle interaction method for blood flow with special emphasis on red blood cell aggregation.
    Wang T; Xing Z
    Biomed Mater Eng; 2014; 24(6):2511-7. PubMed ID: 25226952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The deformation behavior of multiple red blood cells in a capillary vessel.
    Gong X; Sugiyama K; Takagi S; Matsumoto Y
    J Biomech Eng; 2009 Jul; 131(7):074504. PubMed ID: 19640140
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.