These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 22981509)

  • 21. Biomimeticity in tissue engineering scaffolds through synthetic peptide modifications-altering chemistry for enhanced biological response.
    Sreejalekshmi KG; Nair PD
    J Biomed Mater Res A; 2011 Feb; 96(2):477-91. PubMed ID: 21171167
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of biomaterials, therapeutic molecules and cells for hepatic tissue engineering.
    Vasanthan KS; Subramanian A; Krishnan UM; Sethuraman S
    Biotechnol Adv; 2012; 30(3):742-52. PubMed ID: 22265845
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Growth factor delivery through electrospun nanofibers in scaffolds for tissue engineering applications.
    Sahoo S; Ang LT; Goh JC; Toh SL
    J Biomed Mater Res A; 2010 Jun; 93(4):1539-50. PubMed ID: 20014288
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The dynamic healing profile of human periodontal ligament stem cells: histological and immunohistochemical analysis using an ectopic transplantation model.
    Kim YT; Park JC; Choi SH; Cho KS; Im GI; Kim BS; Kim CS
    J Periodontal Res; 2012 Aug; 47(4):514-24. PubMed ID: 22308979
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The use of nanotechnology in tendon regeneration and repair.
    Oragui E; Sachinis N; Hope N; Khan WS; Adesida A
    J Stem Cells; 2012; 7(2):121-6. PubMed ID: 23550351
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Scaffolds for hand tissue engineering: the importance of surface topography.
    Kloczko E; Nikkhah D; Yildirimer L
    J Hand Surg Eur Vol; 2015 Nov; 40(9):973-85. PubMed ID: 25770899
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Precision extruding deposition (PED) fabrication of polycaprolactone (PCL) scaffolds for bone tissue engineering.
    Shor L; Güçeri S; Chang R; Gordon J; Kang Q; Hartsock L; An Y; Sun W
    Biofabrication; 2009 Mar; 1(1):015003. PubMed ID: 20811098
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rapid prototyping in tissue engineering: challenges and potential.
    Yeong WY; Chua CK; Leong KF; Chandrasekaran M
    Trends Biotechnol; 2004 Dec; 22(12):643-52. PubMed ID: 15542155
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Potential of endogenous regenerative technology for in situ regenerative medicine.
    Anitua E; Sánchez M; Orive G
    Adv Drug Deliv Rev; 2010 Jun; 62(7-8):741-52. PubMed ID: 20102730
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microstructure design of biodegradable scaffold and its effect on tissue regeneration.
    Chen Y; Zhou S; Li Q
    Biomaterials; 2011 Aug; 32(22):5003-14. PubMed ID: 21529933
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Functional biomaterials for cartilage regeneration.
    Ge Z; Li C; Heng BC; Cao G; Yang Z
    J Biomed Mater Res A; 2012 Sep; 100(9):2526-36. PubMed ID: 22492677
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tissue-engineered skin containing mesenchymal stem cells improves burn wounds.
    Liu P; Deng Z; Han S; Liu T; Wen N; Lu W; Geng X; Huang S; Jin Y
    Artif Organs; 2008 Dec; 32(12):925-31. PubMed ID: 19133020
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inorganic-organic hybrid scaffolds for osteochondral regeneration.
    Munoz-Pinto DJ; McMahon RE; Kanzelberger MA; Jimenez-Vergara AC; Grunlan MA; Hahn MS
    J Biomed Mater Res A; 2010 Jul; 94(1):112-21. PubMed ID: 20128006
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A multi-functional scaffold for tissue regeneration: the need to engineer a tissue analogue.
    Causa F; Netti PA; Ambrosio L
    Biomaterials; 2007 Dec; 28(34):5093-9. PubMed ID: 17675151
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Skin regeneration: the complexities of translation into clinical practise.
    Wood FM
    Int J Biochem Cell Biol; 2014 Nov; 56():133-40. PubMed ID: 25448410
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enhancement of neurite outgrowth using nano-structured scaffolds coupled with laminin.
    Koh HS; Yong T; Chan CK; Ramakrishna S
    Biomaterials; 2008 Sep; 29(26):3574-82. PubMed ID: 18533251
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nanotechnology in the design of soft tissue scaffolds: innovations in structure and function.
    Ayres CE; Jha BS; Sell SA; Bowlin GL; Simpson DG
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2010; 2(1):20-34. PubMed ID: 20049828
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fabrication and evaluation of biomimetic-synthetic nanofibrous composites for soft tissue regeneration.
    Gee AO; Baker BM; Silverstein AM; Montero G; Esterhai JL; Mauck RL
    Cell Tissue Res; 2012 Mar; 347(3):803-13. PubMed ID: 22287042
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Comparative study on repair of full-thickness burn wound with different artificial dermal stent in pigs].
    Xu SJ; Ma L; Teng JY; Xie J; Zhu JT; Sun DJ; Ye S; Ni YD; Wang YG
    Zhonghua Zheng Xing Wai Ke Za Zhi; 2010 Sep; 26(5):360-4. PubMed ID: 21174793
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Promotion of skin regeneration in diabetic rats by electrospun core-sheath fibers loaded with basic fibroblast growth factor.
    Yang Y; Xia T; Zhi W; Wei L; Weng J; Zhang C; Li X
    Biomaterials; 2011 Jun; 32(18):4243-54. PubMed ID: 21402405
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.