BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 22981679)

  • 21. Use of Pelvic Corrective Force With Visual Feedback Improves Paretic Leg Muscle Activities and Gait Performance After Stroke.
    Hsu CJ; Kim J; Roth EJ; Rymer WZ; Wu M
    IEEE Trans Neural Syst Rehabil Eng; 2019 Dec; 27(12):2353-2360. PubMed ID: 31675335
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Timing of propulsion-related biomechanical variables is impaired in individuals with post-stroke hemiparesis.
    Alam Z; Rendos NK; Vargas AM; Makanjuola J; Kesar TM
    Gait Posture; 2022 Jul; 96():275-278. PubMed ID: 35716486
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Co-contraction around the knee and the ankle joints during post-stroke gait.
    Souissi H; Zory R; Bredin J; Roche N; Gerus P
    Eur J Phys Rehabil Med; 2018 Jun; 54(3):380-387. PubMed ID: 28849896
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Walking velocity and lower limb coordination in hemiparesis.
    Hutin E; Pradon D; Barbier F; Bussel B; Gracies JM; Roche N
    Gait Posture; 2012 Jun; 36(2):205-11. PubMed ID: 22551503
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Muscle contributions to support during gait in an individual with post-stroke hemiparesis.
    Higginson JS; Zajac FE; Neptune RR; Kautz SA; Delp SL
    J Biomech; 2006; 39(10):1769-77. PubMed ID: 16046223
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of walking with loads above the ankle on gait parameters of persons with hemiparesis after stroke.
    Duclos C; Nadeau S; Bourgeois N; Bouyer L; Richards CL
    Clin Biomech (Bristol, Avon); 2014 Mar; 29(3):265-71. PubMed ID: 24405568
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Muscle force strategies for poststroke hemiparetic patients during gait.
    Souissi H; Zory R; Boudarham J; Pradon D; Roche N; Gerus P
    Top Stroke Rehabil; 2019 Jan; 26(1):58-65. PubMed ID: 30354914
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Foot placement in a body reference frame during walking and its relationship to hemiparetic walking performance.
    Balasubramanian CK; Neptune RR; Kautz SA
    Clin Biomech (Bristol, Avon); 2010 Jun; 25(5):483-90. PubMed ID: 20193972
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Gait Impairments in Patients Without Lower Limb Hypertonia Early Poststroke Are Related to Weakness of Paretic Knee Flexors.
    Chow JW; Stokic DS
    Arch Phys Med Rehabil; 2019 Jun; 100(6):1091-1101. PubMed ID: 30447195
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of real-time gait biofeedback on paretic propulsion and gait biomechanics in individuals post-stroke.
    Genthe K; Schenck C; Eicholtz S; Zajac-Cox L; Wolf S; Kesar TM
    Top Stroke Rehabil; 2018 Apr; 25(3):186-193. PubMed ID: 29457532
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Locomotor Adaptability Task Promotes Intense and Task-Appropriate Output From the Paretic Leg During Walking.
    Clark DJ; Neptune RR; Behrman AL; Kautz SA
    Arch Phys Med Rehabil; 2016 Mar; 97(3):493-6. PubMed ID: 26525528
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Applying a pelvic corrective force induces forced use of the paretic leg and improves paretic leg EMG activities of individuals post-stroke during treadmill walking.
    Hsu CJ; Kim J; Tang R; Roth EJ; Rymer WZ; Wu M
    Clin Neurophysiol; 2017 Oct; 128(10):1915-1922. PubMed ID: 28826022
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Intralimb gait coordination of individuals with stroke using vector coding.
    Celestino ML; van Emmerik R; Barela JA; Gama GL; Barela AMF
    Hum Mov Sci; 2019 Dec; 68():102522. PubMed ID: 31707313
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Crouch gait can be an effective form of forced-use/no constraint exercise for the paretic lower limb in stroke.
    Tesio L; Rota V; Malloggi C; Brugliera L; Catino L
    Int J Rehabil Res; 2017 Sep; 40(3):254-267. PubMed ID: 28574860
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Contribution of Paretic and Nonparetic Limb Peak Propulsive Forces to Changes in Walking Speed in Individuals Poststroke.
    Hsiao H; Awad LN; Palmer JA; Higginson JS; Binder-Macleod SA
    Neurorehabil Neural Repair; 2016 Sep; 30(8):743-52. PubMed ID: 26721869
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Slow and faster post-stroke walkers have a different trunk progression and braking impulse during gait.
    Duclos NC; Duclos C; Nadeau S
    Gait Posture; 2019 Feb; 68():483-487. PubMed ID: 30616177
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Augmenting propulsion demands during split-belt walking increases locomotor adaptation of asymmetric step lengths.
    Sombric CJ; Torres-Oviedo G
    J Neuroeng Rehabil; 2020 Jun; 17(1):69. PubMed ID: 32493440
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparison of motor control deficits during treadmill and overground walking poststroke.
    Kautz SA; Bowden MG; Clark DJ; Neptune RR
    Neurorehabil Neural Repair; 2011 Oct; 25(8):756-65. PubMed ID: 21636831
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Changes in activation timing of knee and ankle extensors during gait are related to changes in heteronymous spinal pathways after stroke.
    Dyer JO; Maupas E; de Andrade Melo S; Bourbonnais D; Nadeau S; Forget R
    J Neuroeng Rehabil; 2014 Oct; 11():148. PubMed ID: 25343962
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.