These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 22981680)
1. In vitro biomechanical study of femoral torsion disorders: effect on femoro-tibial kinematics. Sobczak S; Dugailly PM; Baillon B; Lefevre P; Rooze M; Salvia P; Feipel V Clin Biomech (Bristol); 2012 Dec; 27(10):1011-6. PubMed ID: 22981680 [TBL] [Abstract][Full Text] [Related]
2. In vitro biomechanical study of femoral torsion disorders: effect on tibial proximal epiphyseal cancellous bone deformation. Sobczak S; Baillon B; Feipel V; Van Sint Jan S; Salvia P; Rooze M Surg Radiol Anat; 2011 Jul; 33(5):439-49. PubMed ID: 21132495 [TBL] [Abstract][Full Text] [Related]
3. In vitro biomechanical study of femoral torsion disorders: effect on moment arms of thigh muscles. Sobczak S; Dugailly PM; Feipel V; Baillon B; Rooze M; Salvia P; Van Sint Jan S Clin Biomech (Bristol); 2013 Feb; 28(2):187-92. PubMed ID: 23337767 [TBL] [Abstract][Full Text] [Related]
5. Modifications of femoral component design in multi-radius total knee arthroplasty lead to higher lateral posterior femoro-tibial translation. Pfitzner T; Moewis P; Stein P; Boeth H; Trepczynski A; von Roth P; Duda GN Knee Surg Sports Traumatol Arthrosc; 2018 Jun; 26(6):1645-1655. PubMed ID: 28656456 [TBL] [Abstract][Full Text] [Related]
6. The effect of wedge and tibial slope angles on knee contact pressure and kinematics following medial opening-wedge high tibial osteotomy. Black MS; d'Entremont AG; McCormack RG; Hansen G; Carr D; Wilson DR Clin Biomech (Bristol); 2018 Jan; 51():17-25. PubMed ID: 29154178 [TBL] [Abstract][Full Text] [Related]
7. [Changes in knee kinematics and quadriceps and hamstrings moment arms after high valgus and varus tibial "dome" osteotomy: An in vitro study]. Baillon B; Salvia P; Feipel V; Rooze M Rev Chir Orthop Reparatrice Appar Mot; 2006 Sep; 92(5):464-72. PubMed ID: 17088740 [TBL] [Abstract][Full Text] [Related]
8. Arthroscopic lateral retinacular release improves patello-femoral and femoro-tibial kinematics in patients with isolated lateral retinacular tightness. Pohlig F; Lenze U; Lenze FW; Lazic I; Haug A; Hinterwimmer S; Graichen H; von Eisenhart-Rothe R Knee Surg Sports Traumatol Arthrosc; 2022 Mar; 30(3):791-799. PubMed ID: 33496826 [TBL] [Abstract][Full Text] [Related]
9. Anterior cruciate ligament function in providing rotational stability assessed by medial and lateral tibiofemoral compartment translations and subluxations. Noyes FR; Jetter AW; Grood ES; Harms SP; Gardner EJ; Levy MS Am J Sports Med; 2015 Mar; 43(3):683-92. PubMed ID: 25540296 [TBL] [Abstract][Full Text] [Related]
10. [Influence of the height of the joint space on the three-dimensional kinetics of total knee prostheses and behavior of the lateral ligaments: an in vitro study]. Châtain F; Marin F; Lavaste F; Skalli W; Neyret P Rev Chir Orthop Reparatrice Appar Mot; 2002 Dec; 88(8):803-11. PubMed ID: 12503022 [TBL] [Abstract][Full Text] [Related]
11. Medial knee stability at flexion increases tibial internal rotation and knee flexion angle after posterior-stabilized total knee arthroplasty. Kamenaga T; Takayama K; Ishida K; Muratsu H; Hayashi S; Hashimoto S; Kuroda Y; Tsubosaka M; Takashima Y; Matsushita T; Niikura T; Kuroda R; Matsumoto T Clin Biomech (Bristol); 2019 Aug; 68():16-22. PubMed ID: 31141758 [TBL] [Abstract][Full Text] [Related]
13. Kinematics of a bicruciate-retaining total knee arthroplasty. Heyse TJ; Slane J; Peersman G; Dirckx M; van de Vyver A; Dworschak P; Fuchs-Winkelmann S; Scheys L Knee Surg Sports Traumatol Arthrosc; 2017 Jun; 25(6):1784-1791. PubMed ID: 28078394 [TBL] [Abstract][Full Text] [Related]
14. Rotational Laxity Control by the Anterolateral Ligament and the Lateral Meniscus Is Dependent on Knee Flexion Angle: A Cadaveric Biomechanical Study. Lording T; Corbo G; Bryant D; Burkhart TA; Getgood A Clin Orthop Relat Res; 2017 Oct; 475(10):2401-2408. PubMed ID: 28536855 [TBL] [Abstract][Full Text] [Related]
15. Effect of tibial slope changes on femorotibial contact kinematics after cruciate-retaining total knee arthroplasty. Pan XQ; Peng AQ; Wang F; Li F; Nie XZ; Yang X; Ji G; Wang XM Knee Surg Sports Traumatol Arthrosc; 2017 Nov; 25(11):3549-3555. PubMed ID: 27888317 [TBL] [Abstract][Full Text] [Related]
16. In vivo movement of femoral flexion axis of a single-radius total knee arthroplasty. Shimizu N; Tomita T; Yamazaki T; Yoshikawa H; Sugamoto K J Arthroplasty; 2014 Dec; 29(12):2407-11. PubMed ID: 24405620 [TBL] [Abstract][Full Text] [Related]
17. Medial opening wedge high tibial osteotomy alters knee moments in multiple planes during walking and stair ascent. Leitch KM; Birmingham TB; Dunning CE; Giffin JR Gait Posture; 2015 Jul; 42(2):165-71. PubMed ID: 26091972 [TBL] [Abstract][Full Text] [Related]
18. Varus femoral and tibial coronal alignments result in different kinematics and kinetics after total knee arthroplasty. Watanabe M; Kuriyama S; Nakamura S; Tanaka Y; Nishitani K; Furu M; Ito H; Matsuda S Knee Surg Sports Traumatol Arthrosc; 2017 Nov; 25(11):3459-3466. PubMed ID: 28484791 [TBL] [Abstract][Full Text] [Related]
19. Variations in Knee Kinematics After ACL Injury and After Reconstruction Are Correlated With Bone Shape Differences. Lansdown DA; Pedoia V; Zaid M; Amano K; Souza RB; Li X; Ma CB Clin Orthop Relat Res; 2017 Oct; 475(10):2427-2435. PubMed ID: 28451863 [TBL] [Abstract][Full Text] [Related]