These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 22981725)

  • 61. Tissue-type plasminogen activator binds to Aβ and AIAPP amyloid fibrils with multiple domains.
    Beringer DX; Fischer MJ; Meeldijk JD; van Donselaar EG; de Mol NJ; Kroon-Batenburg LM
    Amyloid; 2013 Jun; 20(2):113-21. PubMed ID: 23697555
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Nicotine breaks down preformed Alzheimer's beta-amyloid fibrils in vitro.
    Ono K; Hasegawa K; Yamada M; Naiki H
    Biol Psychiatry; 2002 Nov; 52(9):880-6. PubMed ID: 12399141
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Amyloid aggregation inhibitory mechanism of arginine-rich D-peptides.
    Olubiyi OO; Frenzel D; Bartnik D; Glück JM; Brener O; Nagel-Steger L; Funke SA; Willbold D; Strodel B
    Curr Med Chem; 2014; 21(12):1448-57. PubMed ID: 24304283
    [TBL] [Abstract][Full Text] [Related]  

  • 64. [Search for antiamyloidogenic compounds based on a nucleation-dependent polymerization model].
    Naiki H; Hasegawa K; Ono K; Yamada M
    Yakugaku Zasshi; 2010 Apr; 130(4):503-9. PubMed ID: 20371993
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Alpha2-macroglobulin associates with beta-amyloid peptide and prevents fibril formation.
    Hughes SR; Khorkova O; Goyal S; Knaeblein J; Heroux J; Riedel NG; Sahasrabudhe S
    Proc Natl Acad Sci U S A; 1998 Mar; 95(6):3275-80. PubMed ID: 9501253
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Binding of ACE-inhibitors to in vitro and patient-derived amyloid-β fibril models.
    Bhavaraju M; Phillips M; Bowman D; Aceves-Hernandez JM; Hansmann UH
    J Chem Phys; 2016 Jan; 144(1):015101. PubMed ID: 26747819
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Inhibition of amyloid Aβ aggregation by high pressures or specific d-enantiomeric peptides.
    Cavini IA; Munte CE; Erlach MB; van Groen T; Kadish I; Zhang T; Ziehm T; Nagel-Steger L; Kutzsche J; Kremer W; Willbold D; Kalbitzer HR
    Chem Commun (Camb); 2018 Mar; 54(26):3294-3297. PubMed ID: 29537428
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A mathematical model of the kinetics of beta-amyloid fibril growth from the denatured state.
    Pallitto MM; Murphy RM
    Biophys J; 2001 Sep; 81(3):1805-22. PubMed ID: 11509390
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Surface plasmon resonance for the label-free detection of Alzheimer's β-amyloid peptide aggregation.
    Palladino P; Aura AM; Spoto G
    Anal Bioanal Chem; 2016 Jan; 408(3):849-54. PubMed ID: 26558762
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Label-Free SERS Strategy for In Situ Monitoring and Real-Time Imaging of Aβ Aggregation Process in Live Neurons and Brain Tissues.
    Zhou Y; Liu J; Zheng T; Tian Y
    Anal Chem; 2020 Apr; 92(8):5910-5920. PubMed ID: 32227892
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Temperature dependence of Congo red binding to amyloid β12-28.
    McKnight RE; Jackson DR; Yokoyama K
    Eur Biophys J; 2013 Jun; 42(6):495-501. PubMed ID: 23636660
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Fluorogenic resveratrol-confined graphene oxide for economic and rapid detection of Alzheimer's disease.
    He XP; Deng Q; Cai L; Wang CZ; Zang Y; Li J; Chen GR; Tian H
    ACS Appl Mater Interfaces; 2014 Apr; 6(8):5379-82. PubMed ID: 24702005
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Amyloid plaques beyond Aβ: a survey of the diverse modulators of amyloid aggregation.
    Stewart KL; Radford SE
    Biophys Rev; 2017 Aug; 9(4):405-419. PubMed ID: 28631243
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Aptamer as a Tool for Investigating the Effects of Electric Field on Aβ
    Zheng Y; Wang Q; Yang X; Nie W; Zou L; Liu X; Wang K
    Anal Chem; 2019 Feb; 91(3):1954-1961. PubMed ID: 30596496
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Principal component analysis of data from NMR titration experiment of uniformly
    Iwaya N; Goda N; Matsuzaki M; Narita A; Shigemitsu Y; Tenno T; Abe Y; Hoshi M; Hiroaki H
    Arch Biochem Biophys; 2020 Sep; 690():108446. PubMed ID: 32593678
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Structurally distinct toxicity inhibitors bind at common loci on β-amyloid fibril.
    Keshet B; Gray JJ; Good TA
    Protein Sci; 2010 Dec; 19(12):2291-304. PubMed ID: 20882638
    [TBL] [Abstract][Full Text] [Related]  

  • 77. N-terminal engineering of amyloid-β-binding Affibody molecules yields improved chemical synthesis and higher binding affinity.
    Lindgren J; Wahlström A; Danielsson J; Markova N; Ekblad C; Gräslund A; Abrahmsén L; Karlström AE; Wärmländer SK
    Protein Sci; 2010 Dec; 19(12):2319-29. PubMed ID: 20886513
    [TBL] [Abstract][Full Text] [Related]  

  • 78. The relationship between Abeta-associated free radical generation and Abeta fibril formation revealed by negative stain electron microscopy and thioflavine-T fluorometric assay.
    Monji A; Utsumi H; Yoshida I; Hashioka S; Tashiro K; Tashiro N
    Neurosci Lett; 2001 May; 304(1-2):65-8. PubMed ID: 11335056
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Molecular Mechanism of Cyanidin-3-
    Gao J; Fu J; Gao X; Yang D
    Nutrients; 2022 Dec; 15(1):. PubMed ID: 36615767
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Rapid Dissolution of Amyloid β Fibrils by Silver Nanoplates.
    Sudhakar S; Mani E
    Langmuir; 2019 May; 35(21):6962-6970. PubMed ID: 31030521
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.