These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
69 related articles for article (PubMed ID: 22981795)
1. In situ high throughput method for H(2)S detection during micro-scale wine fermentation. Winter G; Curtin C J Microbiol Methods; 2012 Oct; 91(1):165-70. PubMed ID: 22981795 [TBL] [Abstract][Full Text] [Related]
2. Effect of nitrogen supplementation and Saccharomyces species on hydrogen sulfide and other volatile sulfur compounds in shiraz fermentation and wine. Ugliano M; Fedrizzi B; Siebert T; Travis B; Magno F; Versini G; Henschke PA J Agric Food Chem; 2009 Jun; 57(11):4948-55. PubMed ID: 19391591 [TBL] [Abstract][Full Text] [Related]
3. Identification of genes affecting hydrogen sulfide formation in Saccharomyces cerevisiae. Linderholm AL; Findleton CL; Kumar G; Hong Y; Bisson LF Appl Environ Microbiol; 2008 Mar; 74(5):1418-27. PubMed ID: 18192430 [TBL] [Abstract][Full Text] [Related]
4. Comparison of three methods for accurate quantification of hydrogen sulfide during fermentation. Ugliano M; Henschke PA Anal Chim Acta; 2010 Feb; 660(1-2):87-91. PubMed ID: 20103148 [TBL] [Abstract][Full Text] [Related]
5. Development of a method to measure hydrogen sulfide in wine fermentation. Park SK J Microbiol Biotechnol; 2008 Sep; 18(9):1550-4. PubMed ID: 18852511 [TBL] [Abstract][Full Text] [Related]
6. Impact of mixed Torulaspora delbrueckii-Saccharomyces cerevisiae culture on high-sugar fermentation. Bely M; Stoeckle P; Masneuf-Pomarède I; Dubourdieu D Int J Food Microbiol; 2008 Mar; 122(3):312-20. PubMed ID: 18262301 [TBL] [Abstract][Full Text] [Related]
7. Selected non-Saccharomyces wine yeasts in controlled multistarter fermentations with Saccharomyces cerevisiae. Comitini F; Gobbi M; Domizio P; Romani C; Lencioni L; Mannazzu I; Ciani M Food Microbiol; 2011 Aug; 28(5):873-82. PubMed ID: 21569929 [TBL] [Abstract][Full Text] [Related]
8. Fermentation behaviour and metabolic interactions of multistarter wine yeast fermentations. Ciani M; Beco L; Comitini F Int J Food Microbiol; 2006 Apr; 108(2):239-45. PubMed ID: 16487611 [TBL] [Abstract][Full Text] [Related]
9. Isolation of sulfite reductase variants of a commercial wine yeast with significantly reduced hydrogen sulfide production. Cordente AG; Heinrich A; Pretorius IS; Swiegers JH FEMS Yeast Res; 2009 May; 9(3):446-59. PubMed ID: 19236486 [TBL] [Abstract][Full Text] [Related]
10. Growth of non-Saccharomyces yeasts affects nutrient availability for Saccharomyces cerevisiae during wine fermentation. Medina K; Boido E; Dellacassa E; Carrau F Int J Food Microbiol; 2012 Jul; 157(2):245-50. PubMed ID: 22687186 [TBL] [Abstract][Full Text] [Related]
11. Heat shock on Saccharomyces cerevisiae inoculum increases glycerol production in wine fermentation. Berovic M; Herga M Biotechnol Lett; 2007 Jun; 29(6):891-4. PubMed ID: 17387435 [TBL] [Abstract][Full Text] [Related]
12. Effects of pH, temperature and SO2 on the formation of pyranoanthocyanins during red wine fermentation with two species of Saccharomyces. Morata A; Gómez-Cordovés MC; Calderón F; Suárez JA Int J Food Microbiol; 2006 Feb; 106(2):123-9. PubMed ID: 16225947 [TBL] [Abstract][Full Text] [Related]
13. The timing of diammonium phosphate supplementation of wine must affects subsequent H2S release during fermentation. Mendes-Ferreira A; Barbosa C; Inês A; Mendes-Faia A J Appl Microbiol; 2010 Feb; 108(2):540-9. PubMed ID: 19663816 [TBL] [Abstract][Full Text] [Related]
14. Discrepancy in glucose and fructose utilisation during fermentation by Saccharomyces cerevisiae wine yeast strains. Berthels NJ; Cordero Otero RR; Bauer FF; Thevelein JM; Pretorius IS FEMS Yeast Res; 2004 May; 4(7):683-9. PubMed ID: 15093771 [TBL] [Abstract][Full Text] [Related]
15. Differential expression of thiamine biosynthetic genes in yeast strains with high and low production of hydrogen sulfide during wine fermentation. Bartra E; Casado M; Carro D; Campamà C; Piña B J Appl Microbiol; 2010 Jul; 109(1):272-81. PubMed ID: 20059614 [TBL] [Abstract][Full Text] [Related]
16. Influence of Williopsis saturnus yeasts in combination with Saccharomyces cerevisiae on wine fermentation. Erten H; Tanguler H Lett Appl Microbiol; 2010 May; 50(5):474-9. PubMed ID: 20214731 [TBL] [Abstract][Full Text] [Related]
17. Evidence of different fermentation behaviours of two indigenous strains of Saccharomyces cerevisiae and Saccharomyces uvarum isolated from Amarone wine. Tosi E; Azzolini M; Guzzo F; Zapparoli G J Appl Microbiol; 2009 Jul; 107(1):210-8. PubMed ID: 19245401 [TBL] [Abstract][Full Text] [Related]
18. Taqman real-time PCR for the detection and enumeration of Saccharomyces cerevisiae in wine. Salinas F; Garrido D; Ganga A; Veliz G; Martínez C Food Microbiol; 2009 May; 26(3):328-32. PubMed ID: 19269577 [TBL] [Abstract][Full Text] [Related]
19. The effect of scale on gene expression: commercial versus laboratory wine fermentations. Rossouw D; Jolly N; Jacobson D; Bauer FF Appl Microbiol Biotechnol; 2012 Feb; 93(3):1207-19. PubMed ID: 21931974 [TBL] [Abstract][Full Text] [Related]
20. Exclusion of Saccharomyces kudriavzevii from a wine model system mediated by Saccharomyces cerevisiae. Arroyo-López FN; Pérez-Través L; Querol A; Barrio E Yeast; 2011 Jun; 28(6):423-35. PubMed ID: 21381110 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]