These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 22981870)

  • 41. Chlorophenols and other related derivatives of environmental concern: properties, distribution and microbial degradation processes.
    Olaniran AO; Igbinosa EO
    Chemosphere; 2011 May; 83(10):1297-306. PubMed ID: 21531434
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Construction of a stable genetically engineered microorganism for degrading HCH & methyl parathion and its characteristics].
    Lu P; Hong YF; Hong Q; Jiang X; Li SP
    Huan Jing Ke Xue; 2008 Jul; 29(7):1973-6. PubMed ID: 18828386
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Modeling and interpreting bioavailability of organic contaminant mixtures in subsurface environments.
    Haws NW; Ball WP; Bouwer EJ
    J Contam Hydrol; 2006 Jan; 82(3-4):255-92. PubMed ID: 16310889
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Molecular Biological Methods in Environmental Engineering.
    Zhang G; Wei L; Chang CC; Zhang Y; Wei D
    Water Environ Res; 2016 Oct; 88(10):930-53. PubMed ID: 27620079
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Integrative approaches for assessing the ecological sustainability of in situ bioremediation.
    Pandey J; Chauhan A; Jain RK
    FEMS Microbiol Rev; 2009 Mar; 33(2):324-75. PubMed ID: 19178567
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Kinetics of Substrate Biodegradation under the Cumulative Effects of Bioavailability and Self-Inhibition.
    Gharasoo M; Centler F; Van Cappellen P; Wick LY; Thullner M
    Environ Sci Technol; 2015 May; 49(9):5529-37. PubMed ID: 25839352
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Plant-microbe interactions as drivers of ecosystem functions relevant for the biodegradation of organic contaminants.
    Fester T; Giebler J; Wick LY; Schlosser D; Kästner M
    Curr Opin Biotechnol; 2014 Jun; 27():168-75. PubMed ID: 24583828
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Contribution of increased mutagenesis to the evolution of pollutants-degrading indigenous bacteria.
    Ilmjärv T; Naanuri E; Kivisaar M
    PLoS One; 2017; 12(8):e0182484. PubMed ID: 28777807
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Bacterial degradation of chlorophenols and their derivatives.
    Arora PK; Bae H
    Microb Cell Fact; 2014 Mar; 13(1):31. PubMed ID: 24589366
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Biodegradation of phenol and its derivatives by engineered bacteria: current knowledge and perspectives.
    Rucká L; Nešvera J; Pátek M
    World J Microbiol Biotechnol; 2017 Sep; 33(9):174. PubMed ID: 28879631
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The potential of metabolomics tools in bioremediation studies.
    Villas-Bôas SG; Bruheim P
    OMICS; 2007; 11(3):305-13. PubMed ID: 17883341
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Biodegradation of organic pollutants by halophilic bacteria and archaea.
    Le Borgne S; Paniagua D; Vazquez-Duhalt R
    J Mol Microbiol Biotechnol; 2008; 15(2-3):74-92. PubMed ID: 18685264
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effect of sediment particle size on polycyclic aromatic hydrocarbon biodegradation: importance of the sediment-water interface.
    Xia X; Wang R
    Environ Toxicol Chem; 2008 Jan; 27(1):119-25. PubMed ID: 18092849
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Problems and potential for in situ treatment of environmental pollutants by engineered microorganisms.
    Jain RK; Sayler GS
    Microbiol Sci; 1987 Feb; 4(2):59-63. PubMed ID: 3153173
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Identification of CtpL as a chromosomally encoded chemoreceptor for 4-chloroaniline and catechol in Pseudomonas aeruginosa PAO1.
    Vangnai AS; Takeuchi K; Oku S; Kataoka N; Nitisakulkan T; Tajima T; Kato J
    Appl Environ Microbiol; 2013 Dec; 79(23):7241-8. PubMed ID: 24038698
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Bioremediation of petroleum hydrocarbons: catabolic genes, microbial communities, and applications.
    Fuentes S; Méndez V; Aguila P; Seeger M
    Appl Microbiol Biotechnol; 2014 Jun; 98(11):4781-94. PubMed ID: 24691868
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Positioning of bacterial chemoreceptors.
    Jones CW; Armitage JP
    Trends Microbiol; 2015 May; 23(5):247-56. PubMed ID: 25843366
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Bioremediation of organic compounds--putting microbial metabolism to work.
    Bouwer EJ; Zehnder AJ
    Trends Biotechnol; 1993 Aug; 11(8):360-7. PubMed ID: 7764183
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Endophytic bacteria: prospects and applications for the phytoremediation of organic pollutants.
    Afzal M; Khan QM; Sessitsch A
    Chemosphere; 2014 Dec; 117():232-42. PubMed ID: 25078615
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Operon mer: bacterial resistance to mercury and potential for bioremediation of contaminated environments.
    Nascimento AM; Chartone-Souza E
    Genet Mol Res; 2003 Mar; 2(1):92-101. PubMed ID: 12917805
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.