These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 22982449)

  • 1. Measurement and conceptual modelling of herbicide transport to field drains in a heavy clay soil with implications for catchment-scale water quality management.
    Tediosi A; Whelan MJ; Rushton KR; Thompson TR; Gandolfi C; Pullan SP
    Sci Total Environ; 2012 Nov; 438():103-12. PubMed ID: 22982449
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting rapid herbicide leaching to surface waters from an artificially drained headwater catchment using a one dimensional two-domain model coupled with a simple groundwater model.
    Tediosi A; Whelan MJ; Rushton KR; Gandolfi C
    J Contam Hydrol; 2013 Feb; 145():67-81. PubMed ID: 23313906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of topsoil tilth and soil moisture status on losses of pesticide to drains from a heavy clay soil.
    Brown CD; Fryer CJ; Walker A
    Pest Manag Sci; 2001 Dec; 57(12):1127-34. PubMed ID: 11802600
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of uncalibrated preferential flow models against data for isoproturon movement to drains through a heavy clay soil.
    Beulke S; Brown CD; Dubus IG; Harris G
    Pest Manag Sci; 2001 Jun; 57(6):537-47. PubMed ID: 11407031
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preferential flow estimates to an agricultural tile drain with implications for glyphosate transport.
    Stone WW; Wilson JT
    J Environ Qual; 2006; 35(5):1825-35. PubMed ID: 16899754
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tillage system, application rate, and extreme event effects on herbicide losses in surface runoff.
    Shipitalo MJ; Owens LB
    J Environ Qual; 2006; 35(6):2186-94. PubMed ID: 17071888
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mobility and fate of carbetamide in an agricultural soil.
    Crovetto G; Navalón A; Ballesteros O; Vílchez JL; García-Herruzo F; Rodríguez-Maroto JM
    J Environ Sci Health B; 2009 Nov; 44(8):764-71. PubMed ID: 20183088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Effect of application of a herbicide propyzamide into the soil by study of mineralization of glucose 14C(U) and distribution of radioactivity in various fractions of the soil (laboratory and open field tests)].
    Thibaud MC; Bastide J; Coste CM; Gadel F; Cahet G
    J Environ Sci Health B; 1983; 18(2):229-52. PubMed ID: 6853965
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of technical and systems-based approaches to managing pesticide contamination in surface water catchments.
    Villamizar ML; Stoate C; Biggs J; Morris C; Szczur J; Brown CD
    J Environ Manage; 2020 Apr; 260():110027. PubMed ID: 32090801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous assessment of sources, processes, and factors influencing herbicide losses to surface waters in a small agricultural catchment.
    Leu C; Singer H; Stamm C; Müller SR; Schwarzenbach RP
    Environ Sci Technol; 2004 Jul; 38(14):3827-34. PubMed ID: 15298189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variability of herbicide losses from 13 fields to surface water within a small catchment after a controlled herbicide application.
    Leu C; Singer H; Stamm C; Müller SR; Schwarzenbach RP
    Environ Sci Technol; 2004 Jul; 38(14):3835-41. PubMed ID: 15298190
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of atrazine losses in three small headwater catchments.
    Leu C; Singer H; Müller SR; Schwarzenbach RP; Stamm C
    J Environ Qual; 2005; 34(5):1873-82. PubMed ID: 16151239
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preferential flow of bromide, bentazon, and imidacloprid in a Dutch clay soil.
    Júnior RP; Smelt JH; Boesten JJ; Hendriks RF; van der Zee SE
    J Environ Qual; 2004; 33(4):1473-86. PubMed ID: 15254130
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atrazine fate and transport within the coastal zone in southeastern Puerto Rico.
    Potter TL; Bosch DD; Dieppa A; Whitall DR; Strickland TC
    Mar Pollut Bull; 2013 Feb; 67(1-2):36-44. PubMed ID: 23321597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Movement of pendimethalin, ioxynil and soil particles to field drainage tiles.
    Petersen CT; Holm J; Koch CB; Jensen HE; Hansen S
    Pest Manag Sci; 2003 Jan; 59(1):85-96. PubMed ID: 12558103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics of herbicide transport and partitioning under event flow conditions in the lower Burdekin region, Australia.
    Davis AM; Lewis SE; Bainbridge ZT; Glendenning L; Turner RD; Brodie JE
    Mar Pollut Bull; 2012; 65(4-9):182-93. PubMed ID: 21937063
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pesticide transport via sub-surface drains in Europe.
    Brown CD; van Beinum W
    Environ Pollut; 2009 Dec; 157(12):3314-24. PubMed ID: 19608317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling potential herbicide loss to surface waters on the Swiss plateau.
    Siber R; Stamm C; Reichert P
    J Environ Manage; 2009 Oct; 91(1):290-302. PubMed ID: 19783355
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Herbicide runoff along highways. 1. Field observations.
    Huang X; Pedersen T; Fischer M; White R; Young TM
    Environ Sci Technol; 2004 Jun; 38(12):3263-71. PubMed ID: 15260322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stochastic modeling of diffuse pesticide losses from a small agricultural catchment.
    Lindahl AM; Kreuger J; Stenström J; Gärdenäs AI; Alavi G; Roulier S; Jarvis NJ
    J Environ Qual; 2005; 34(4):1174-85. PubMed ID: 15942036
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.