BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

357 related articles for article (PubMed ID: 22982493)

  • 1. Ca(V)1.1: The atypical prototypical voltage-gated Ca²⁺ channel.
    Bannister RA; Beam KG
    Biochim Biophys Acta; 2013 Jul; 1828(7):1587-97. PubMed ID: 22982493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bridging the myoplasmic gap II: more recent advances in skeletal muscle excitation-contraction coupling.
    Bannister RA
    J Exp Biol; 2016 Jan; 219(Pt 2):175-82. PubMed ID: 26792328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Divergent biophysical properties, gating mechanisms, and possible functions of the two skeletal muscle Ca(V)1.1 calcium channel splice variants.
    Tuluc P; Flucher BE
    J Muscle Res Cell Motil; 2011 Dec; 32(4-5):249-56. PubMed ID: 22057633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and function of the β subunit of voltage-gated Ca²⁺ channels.
    Buraei Z; Yang J
    Biochim Biophys Acta; 2013 Jul; 1828(7):1530-40. PubMed ID: 22981275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alterations of excitation-contraction coupling and excitation coupled Ca(2+) entry in human myotubes carrying CAV3 mutations linked to rippling muscle.
    Ullrich ND; Fischer D; Kornblum C; Walter MC; Niggli E; Zorzato F; Treves S
    Hum Mutat; 2011 Mar; 32(3):309-17. PubMed ID: 21294223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ryanodine modification of RyR1 retrogradely affects L-type Ca(2+) channel gating in skeletal muscle.
    Bannister RA; Beam KG
    J Muscle Res Cell Motil; 2009; 30(5-6):217-23. PubMed ID: 19802526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A CaV1.1 Ca2+ channel splice variant with high conductance and voltage-sensitivity alters EC coupling in developing skeletal muscle.
    Tuluc P; Molenda N; Schlick B; Obermair GJ; Flucher BE; Jurkat-Rott K
    Biophys J; 2009 Jan; 96(1):35-44. PubMed ID: 19134469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Divalent cations permeation in a Ca
    Idoux R; Fuster C; Jacquemond V; Dayal A; Grabner M; Charnet P; Allard B
    Cell Calcium; 2020 Nov; 91():102256. PubMed ID: 32866694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rem uncouples excitation-contraction coupling in adult skeletal muscle fibers.
    Beqollari D; Romberg CF; Filipova D; Meza U; Papadopoulos S; Bannister RA
    J Gen Physiol; 2015 Jul; 146(1):97-108. PubMed ID: 26078055
    [TBL] [Abstract][Full Text] [Related]  

  • 10. What can naturally occurring mutations tell us about Ca(v)1.x channel function?
    Stockner T; Koschak A
    Biochim Biophys Acta; 2013 Jul; 1828(7):1598-607. PubMed ID: 23219801
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Excitation-contraction coupling in skeletal muscle of a mouse lacking the dihydropyridine receptor subunit gamma1.
    Ursu D; Sebille S; Dietze B; Freise D; Flockerzi V; Melzer W
    J Physiol; 2001 Jun; 533(Pt 2):367-77. PubMed ID: 11389198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Voltage dependence of cardiac excitation-contraction coupling: unitary Ca2+ current amplitude and open channel probability.
    Altamirano J; Bers DM
    Circ Res; 2007 Sep; 101(6):590-7. PubMed ID: 17641229
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fast activation of dihydropyridine-sensitive calcium channels of skeletal muscle. Multiple pathways of channel gating.
    Ma J; González A; Chen R
    J Gen Physiol; 1996 Sep; 108(3):221-32. PubMed ID: 8882865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Roles of molecular regions in determining differences between voltage dependence of activation of CaV3.1 and CaV1.2 calcium channels.
    Li J; Stevens L; Klugbauer N; Wray D
    J Biol Chem; 2004 Jun; 279(26):26858-67. PubMed ID: 15100229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Properties of Na+ currents conducted by a skeletal muscle L-type Ca2+ channel pore mutant (SkEIIIK).
    Bannister RA; Beam KG
    Channels (Austin); 2011; 5(3):262-8. PubMed ID: 21406961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cardiac voltage-gated calcium channel macromolecular complexes.
    Rougier JS; Abriel H
    Biochim Biophys Acta; 2016 Jul; 1863(7 Pt B):1806-12. PubMed ID: 26707467
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ca(v)1.3 and BK channels for timing and regulating cell firing.
    Vandael DH; Marcantoni A; Mahapatra S; Caro A; Ruth P; Zuccotti A; Knipper M; Carbone E
    Mol Neurobiol; 2010 Dec; 42(3):185-98. PubMed ID: 21088933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Swapping the I-II intracellular linker between L-type CaV1.2 and R-type CaV2.3 high-voltage gated calcium channels exchanges activation attributes.
    Gonzalez-Gutierrez G; Miranda-Laferte E; Contreras G; Neely A; Hidalgo P
    Channels (Austin); 2010; 4(1):42-50. PubMed ID: 20026913
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rem inhibits skeletal muscle EC coupling by reducing the number of functional L-type Ca2+ channels.
    Bannister RA; Colecraft HM; Beam KG
    Biophys J; 2008 Apr; 94(7):2631-8. PubMed ID: 18192376
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correcting the R165K substitution in the first voltage-sensor of Ca
    El Ghaleb Y; Campiglio M; Flucher BE
    Channels (Austin); 2019 Dec; 13(1):62-71. PubMed ID: 30638110
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.