These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
221 related articles for article (PubMed ID: 22982549)
1. Chemical stabilization of metals and arsenic in contaminated soils using oxides--a review. Komárek M; Vaněk A; Ettler V Environ Pollut; 2013 Jan; 172():9-22. PubMed ID: 22982549 [TBL] [Abstract][Full Text] [Related]
2. Remediation of heavy metal(loid)s contaminated soils--to mobilize or to immobilize? Bolan N; Kunhikrishnan A; Thangarajan R; Kumpiene J; Park J; Makino T; Kirkham MB; Scheckel K J Hazard Mater; 2014 Feb; 266():141-66. PubMed ID: 24394669 [TBL] [Abstract][Full Text] [Related]
3. Chemical attenuation of arsenic by soils across two abandoned mine sites in Korea. Nam SM; Kim M; Hyun S; Lee SH Chemosphere; 2010 Nov; 81(9):1124-30. PubMed ID: 20869095 [TBL] [Abstract][Full Text] [Related]
4. Assessment of biochar and iron filing amendments for the remediation of a metal, arsenic and phenanthrene co-contaminated spoil. Sneath HE; Hutchings TR; de Leij FA Environ Pollut; 2013 Jul; 178():361-6. PubMed ID: 23603665 [TBL] [Abstract][Full Text] [Related]
5. Green manure plants for remediation of soils polluted by metals and metalloids: ecotoxicity and human bioavailability assessment. Foucault Y; Lévêque T; Xiong T; Schreck E; Austruy A; Shahid M; Dumat C Chemosphere; 2013 Oct; 93(7):1430-5. PubMed ID: 23968553 [TBL] [Abstract][Full Text] [Related]
6. Effects of compost, pig slurry and lime on trace element solubility and toxicity in two soils differently affected by mining activities. Pardo T; Clemente R; Bernal MP Chemosphere; 2011 Jul; 84(5):642-50. PubMed ID: 21492902 [TBL] [Abstract][Full Text] [Related]
7. Functioning of metal contaminated garden soil after remediation. Jelusic M; Grcman H; Vodnik D; Suhadolc M; Lestan D Environ Pollut; 2013 Mar; 174():63-70. PubMed ID: 23246748 [TBL] [Abstract][Full Text] [Related]
8. Effects of calcium peroxide on arsenic uptake by celery (Apium graveolens L.) grown in arsenic contaminated soil. Liu CP; Luo CL; Xu XH; Wu CA; Li FB; Zhang G Chemosphere; 2012 Mar; 86(11):1106-11. PubMed ID: 22226367 [TBL] [Abstract][Full Text] [Related]
9. In situ stabilization of As and Sb with naturally occurring Mn, Al and Fe oxides in a calcareous soil: bioaccessibility, bioavailability and speciation studies. Bagherifam S; Lakzian A; Fotovat A; Khorasani R; Komarneni S J Hazard Mater; 2014 May; 273():247-52. PubMed ID: 24751490 [TBL] [Abstract][Full Text] [Related]
10. Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils. Park JH; Lamb D; Paneerselvam P; Choppala G; Bolan N; Chung JW J Hazard Mater; 2011 Jan; 185(2-3):549-74. PubMed ID: 20974519 [TBL] [Abstract][Full Text] [Related]
11. The fate of arsenic in soil-plant systems. Moreno-Jiménez E; Esteban E; Peñalosa JM Rev Environ Contam Toxicol; 2012; 215():1-37. PubMed ID: 22057929 [TBL] [Abstract][Full Text] [Related]
12. In situ chemical fixation of arsenic-contaminated soils: an experimental study. Yang L; Donahoe RJ; Redwine JC Sci Total Environ; 2007 Nov; 387(1-3):28-41. PubMed ID: 17673278 [TBL] [Abstract][Full Text] [Related]
13. Impact of the earthworm Lumbricus terrestris (L.) on As, Cu, Pb and Zn mobility and speciation in contaminated soils. Sizmur T; Palumbo-Roe B; Watts MJ; Hodson ME Environ Pollut; 2011 Mar; 159(3):742-8. PubMed ID: 21185630 [TBL] [Abstract][Full Text] [Related]
14. Arsenic stabilization by zero-valent iron, bauxite residue, and zeolite at a contaminated site planting Panax notoginseng. Yan XL; Lin LY; Liao XY; Zhang WB; Wen Y Chemosphere; 2013 Oct; 93(4):661-7. PubMed ID: 23871591 [TBL] [Abstract][Full Text] [Related]
15. Hydrated lime for metals immobilization and explosives transformation: Treatability study. Martin WA; Larson SL; Nestler CC; Fabian G; O'Connor G; Felt DR J Hazard Mater; 2012 May; 215-216():280-6. PubMed ID: 22445717 [TBL] [Abstract][Full Text] [Related]
16. Kinetics as a tool to assess the immobilization of soil trace metals by binding phase amendments for in situ remediation purposes. Varrault G; Bermond A J Hazard Mater; 2011 Aug; 192(2):808-12. PubMed ID: 21708424 [TBL] [Abstract][Full Text] [Related]
17. The use of chelating agents in the remediation of metal-contaminated soils: a review. Lestan D; Luo CL; Li XD Environ Pollut; 2008 May; 153(1):3-13. PubMed ID: 18155817 [TBL] [Abstract][Full Text] [Related]
18. Implications of the use of As-rich groundwater for agricultural purposes and the effects of soil amendments on as solubility. de la Fuente C; Clemente R; Alburquerque JA; Vélez D; Bernal MP Environ Sci Technol; 2010 Dec; 44(24):9463-9. PubMed ID: 21090743 [TBL] [Abstract][Full Text] [Related]
19. Evolution of bioavailable copper and major soil cations in contaminated soils treated with ethylenediaminedisuccinate: a two-year experiment. Komárek M; Michálková Z; Száková J; Vaněk A; Grygar T Bull Environ Contam Toxicol; 2011 May; 86(5):525-30. PubMed ID: 21442210 [TBL] [Abstract][Full Text] [Related]
20. Assessment of fly ash-aided phytostabilisation of highly contaminated soils after an 8-year field trial Part 2. Influence on plants. Pourrut B; Lopareva-Pohu A; Pruvot C; Garçon G; Verdin A; Waterlot C; Bidar G; Shirali P; Douay F Sci Total Environ; 2011 Oct; 409(21):4504-10. PubMed ID: 21871650 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]