These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 22982727)

  • 1. Variations in the temporal pattern of perforant pathway stimulation control the activity in the mesolimbic pathway.
    Helbing C; Werner G; Angenstein F
    Neuroimage; 2013 Jan; 64():43-60. PubMed ID: 22982727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Perforant pathway stimulation as a conditioned stimulus for active avoidance learning triggers BOLD responses in various target regions of the hippocampus: a combined fMRI and electrophysiological study.
    Angenstein F; Krautwald K; Wetzel W; Scheich H
    Neuroimage; 2013 Jul; 75():213-227. PubMed ID: 23507376
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synchronized electrical stimulation of the rat medial forebrain bundle and perforant pathway generates an additive BOLD response in the nucleus accumbens and prefrontal cortex.
    Krautwald K; Min HK; Lee KH; Angenstein F
    Neuroimage; 2013 Aug; 77():14-25. PubMed ID: 23558098
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of the mesolimbic dopamine system in the formation of blood-oxygen-level dependent responses in the medial prefrontal/anterior cingulate cortex during high-frequency stimulation of the rat perforant pathway.
    Helbing C; Brocka M; Scherf T; Lippert MT; Angenstein F
    J Cereb Blood Flow Metab; 2016 Dec; 36(12):2177-2193. PubMed ID: 26661229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electric stimulation fMRI of the perforant pathway to the rat hippocampus.
    Canals S; Beyerlein M; Murayama Y; Logothetis NK
    Magn Reson Imaging; 2008 Sep; 26(7):978-86. PubMed ID: 18479870
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Frequency-dependent activation pattern in the rat hippocampus, a simultaneous electrophysiological and fMRI study.
    Angenstein F; Kammerer E; Niessen HG; Frey JU; Scheich H; Frey S
    Neuroimage; 2007 Oct; 38(1):150-63. PubMed ID: 17728153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Late effect of dopamine D
    Helbing C; Tischmeyer W; Angenstein F
    Neuroimage; 2017 May; 152():119-129. PubMed ID: 28259782
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Frequency-dependent electrical stimulation of fimbria-fornix preferentially affects the mesolimbic dopamine system or prefrontal cortex.
    Helbing C; Angenstein F
    Brain Stimul; 2020; 13(3):753-764. PubMed ID: 32289705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The current functional state of local neuronal circuits controls the magnitude of a BOLD response to incoming stimuli.
    Angenstein F; Krautwald K; Scheich H
    Neuroimage; 2010 May; 50(4):1364-75. PubMed ID: 20114080
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hemodynamic responses in the rat hippocampus are simultaneously controlled by at least two independently acting neurovascular coupling mechanisms.
    Arboit A; Krautwald K; Angenstein F
    J Cereb Blood Flow Metab; 2024 Jun; 44(6):896-910. PubMed ID: 38087890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential modulation of hippocampal signal transfer by tuberomammillary nucleus stimulation in freely moving rats dependent on behavioral state.
    Weiler HT; Hasenöhrl RU; van Landeghem AA; van Landeghem M; Brankack J; Huston JP; Haas HL
    Synapse; 1998 Apr; 28(4):294-301. PubMed ID: 9517838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of cerebral blood flow in the hippocampus by neuronal activation through the perforant path: relationship between hippocampal blood flow and neuronal plasticity.
    Hamadate N; Yamaguchi T; Sugawara A; Tsujimatsu A; Izumi T; Yoshida T; Ohmura Y; Yoshioka M
    Brain Res; 2011 Sep; 1415():1-7. PubMed ID: 21880304
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fimbrial control of bidirectional synaptic plasticity of medial perforant path-dentate transmission.
    Nakao K; Ikegaya Y; Yamada MK; Nishiyama N; Matsuki N
    Synapse; 2003 Mar; 47(3):163-8. PubMed ID: 12494398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bidirectional redistribution of AMPA but not NMDA receptors after perforant path simulation in the adult rat hippocampus in vivo.
    Moga DE; Shapiro ML; Morrison JH
    Hippocampus; 2006; 16(11):990-1003. PubMed ID: 17039486
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Medial prefrontal cortical output neurons to the ventral tegmental area (VTA) and their responses to burst-patterned stimulation of the VTA: neuroanatomical and in vivo electrophysiological analyses.
    Au-Young SM; Shen H; Yang CR
    Synapse; 1999 Dec; 34(4):245-55. PubMed ID: 10529719
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Studies of the synaptic plasticity of field CA3 of the hippocampus during tetanization of the perforant path.
    Safiulina VF; Kas'yanov AM; Markevich VA; Bogdanova OG; Dvorzhak AY; Zosimovskii VA; Ezrokhi VL
    Neurosci Behav Physiol; 2005 Sep; 35(7):693-8. PubMed ID: 16433064
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spreading depression in the cortex differently modulates dopamine release in rat mesolimbic and nigrostriatal terminal fields.
    Yavich L; Ylinen A
    Exp Neurol; 2005 Nov; 196(1):47-53. PubMed ID: 16084513
    [TBL] [Abstract][Full Text] [Related]  

  • 18. From unspecific to adjusted, how the BOLD response in the rat hippocampus develops during consecutive stimulations.
    Riemann S; Helbing C; Angenstein F
    J Cereb Blood Flow Metab; 2017 Feb; 37(2):590-604. PubMed ID: 26911895
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The actual intrinsic excitability of granular cells determines the ruling neurovascular coupling mechanism in the rat dentate gyrus.
    Angenstein F
    J Neurosci; 2014 Jun; 34(25):8529-45. PubMed ID: 24948808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of extracellular monoamine transmitter concentrations in the hippocampus after weak and strong tetanization of the perforant path in freely moving rats.
    Neugebauer F; Korz V; Frey JU
    Brain Res; 2009 Jun; 1273():29-38. PubMed ID: 19345680
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.