These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 2298287)

  • 1. A possible genetic component of obesity in childhood. Observations on acid phosphatase polymorphism.
    Lucarini N; Finocchi G; Gloria-Bottini F; Macioce M; Borgiani P; Amante A; Bottini E
    Experientia; 1990 Jan; 46(1):90-1. PubMed ID: 2298287
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzyme polymorphism and clinical variability of diseases: study of acid phosphatase locus 1 (ACP1) in obese subjects.
    Bottini E; Lucarini N; Gerlini G; Finocchi G; Sciré G; Gloria-Bottini F
    Hum Biol; 1990 Jun; 62(3):403-11. PubMed ID: 2373509
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intrauterine growth: association with acid phosphatase genetic polymorphism.
    Amante A; Gloria-Bottini F; Bottini E
    J Perinat Med; 1990; 18(4):275-82. PubMed ID: 2262871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Foetal macrosomia and erythrocyte acid phosphatase (ACP1) polymorphism in diabetic and normal pregnancy.
    Gloria-Bottini F; Gerlini G; Lucarini N; Borgiani P; Gori MC; Amante A; Lucarelli P; Bottini E
    Early Hum Dev; 1988; 17(2-3):265-74. PubMed ID: 3208681
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Serum haptoglobin appearance during neonatal period is associated with acid phosphatase (ACP1) phenotype.
    Bottini E; Carapella E; Scacchi R; Lucarini N; Gloria-Bottini F; Pascone R; Bonci E; Maggioni G
    Early Hum Dev; 1985 Jan; 10(3-4):237-43. PubMed ID: 3987576
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzyme variability and neonatal jaundice. The role of adenosine deaminase and acid phosphatase.
    Lepore A; Lucarini N; Evangelista MA; Palombaro G; Londrillo A; Ballarini P; Borgiani P; Gloria-Bottini F; Bottini E
    J Perinat Med; 1989; 17(3):195-201. PubMed ID: 2810003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ACP1GUA-1--a low-activity variant of human erythrocyte acid phosphatase: association with increased glutathione reductase activity.
    Mohrenweiser HW; Novotny JE
    Am J Hum Genet; 1982 May; 34(3):425-33. PubMed ID: 7081221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. ACP1 and human adaptability. 1. Association with common diseases: a case-control study.
    Bottini E; Gloria-Bottini F; Borgiani P
    Hum Genet; 1995 Dec; 96(6):629-37. PubMed ID: 8522318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction at clinical level between erythrocyte acid phosphatase and adenosine deaminase genetic polymorphisms.
    Gloria-Bottini F; Lucarelli P; Amante A; Lucarini N; Finocchi G; Bottini E
    Hum Genet; 1989 Jun; 82(3):213-5. PubMed ID: 2731933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetic polymorphisms in juvenile-onset diabetes.
    Lucarelli P; Scacchi R; Corbo RM; Palmarino R; Orsini M; Campea L; Carapella E; Pascone R
    Hum Hered; 1978; 28(2):89-95. PubMed ID: 621091
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Further studies on acid phosphatase in obese subjects.
    Paggi A; Borgiani P; Gloria-Bottini F; Russo S; Saponara I; Banci M; Amante A; Lucarini N; Bottini E
    Dis Markers; 1991; 9(1):1-7. PubMed ID: 1742941
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-molecular-weight acid phosphatase (ACP1), obesity, and blood lipid levels in subjects with non-insulin-dependent diabetes mellitus.
    Lucarini N; Antonacci E; Bottini N; Gloria Bottini F
    Hum Biol; 1997 Aug; 69(4):509-15. PubMed ID: 9198310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distribution of ACP1, AK1 and ALAD polymorphisms in northern Portugal.
    Amorim A; Rocha J; Santos MT
    Gene Geogr; 1994 Aug; 8(2):147-50. PubMed ID: 7547603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phenotypic variation in the phosphotransferase activity of human red cell acid phosphatase (ACP1).
    Golden VL; Sensabaugh GF
    Hum Genet; 1986 Apr; 72(4):340-3. PubMed ID: 3009301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Erythrocytic acid phosphatase genetic polymorphism and cardiovascular risk in health children and adolescents].
    Da Silva AP; Sardinha LB; Llobet S; Marta MJ; Albergaria F; Torres AL; Monteiro C; Laires MJ; Halpern MJ; Bicho MP
    Rev Port Cardiol; 2002 Jan; 21(1):65-71. PubMed ID: 11941902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Red cell polymorphisms in Sardinia.
    Rickards O; Biondi G; Fuciarelli M; Capucci E; Walter H; De Stefano GF
    Hum Hered; 1988; 38(6):332-6. PubMed ID: 2977598
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An examination of the age-related patterns of decay of acid phosphatase (ACP1) in human red cells from individuals of different phenotypes.
    Rogers PA; Fisher RA; Putt W
    Biochem Genet; 1978 Aug; 16(7-8):727-38. PubMed ID: 728063
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three new phenotypes of human red cell acid phosphatase: ACP1FA, ACP1GA, and ACP1GB.
    Nelson MS; Smith EA; Carlton WK; Andrus RH; Reisner EG
    Hum Genet; 1984; 67(4):369-71. PubMed ID: 6490004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human red-cell acid phosphatase (ACP1): a new mutant (ACP1*KUK) detected by isoelectric focusing, kinetics of thermostability and substrate activity.
    Arnaud J; Vavrusa B; Sevin J; Constans J
    Hum Hered; 1989; 39(5):288-93. PubMed ID: 2613255
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phenotypic and quantitative relationship of red cell acid phosphatase with haemoglobin, haptoglobin, and G6PD phenotypes.
    Saha N; Patgunarajah N
    J Med Genet; 1981 Aug; 18(4):271-5. PubMed ID: 7277420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.