These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 2298301)
1. Specific interaction of the new fluorescent dye 10-N-nonyl acridine orange with inner mitochondrial membrane. A lipid-mediated inhibition of oxidative phosphorylation. Maftah A; Petit JM; Julien R FEBS Lett; 1990 Jan; 260(2):236-40. PubMed ID: 2298301 [TBL] [Abstract][Full Text] [Related]
2. Effect of the plasticizer di-(2-ethylhexyl)phthalate on oxidative phosphorylation in rat liver mitochondria: modification of the function of the adenine nucleotide translocator. Kora S; Sado M; Terada H J Pharmacobiodyn; 1988 Dec; 11(12):773-8. PubMed ID: 2855530 [TBL] [Abstract][Full Text] [Related]
3. High resolution respirometry analysis of polyethylenimine-mediated mitochondrial energy crisis and cellular stress: Mitochondrial proton leak and inhibition of the electron transport system. Hall A; Larsen AK; Parhamifar L; Meyle KD; Wu LP; Moghimi SM Biochim Biophys Acta; 2013 Oct; 1827(10):1213-25. PubMed ID: 23850549 [TBL] [Abstract][Full Text] [Related]
4. The hydrophobic cationic cyanine dye inhibits oxidative phosphorylation by inhibiting ADP transport, not by electrophoretic transfer, into mitochondria. Shinohara Y; Nagamune H; Terada H Biochem Biophys Res Commun; 1987 Nov; 148(3):1081-6. PubMed ID: 3689387 [TBL] [Abstract][Full Text] [Related]
5. Rhodamine 123 inhibits bioenergetic function in isolated rat liver mitochondria. Modica-Napolitano JS; Weiss MJ; Chen LB; Aprille JR Biochem Biophys Res Commun; 1984 Feb; 118(3):717-23. PubMed ID: 6200108 [TBL] [Abstract][Full Text] [Related]
6. 10-N nonyl-acridine orange: a fluorescent probe which stains mitochondria independently of their energetic state. Maftah A; Petit JM; Ratinaud MH; Julien R Biochem Biophys Res Commun; 1989 Oct; 164(1):185-90. PubMed ID: 2478126 [TBL] [Abstract][Full Text] [Related]
7. Inhibition of mitochondrial energy-linked functions by arsenate. Evidence for a nonhydrolytic mode of inhibitor action. Mitchell RA; Chang BF; Huang CH; DeMaster EG Biochemistry; 1971 May; 10(11):2049-54. PubMed ID: 4327397 [No Abstract] [Full Text] [Related]
8. Effect of progesterone on respiration and oxidative phosphorylation. Aleksandrowicz Z; Swierczyński J; Zelewski L Eur J Biochem; 1972 Dec; 31(2):300-7. PubMed ID: 4265063 [No Abstract] [Full Text] [Related]
9. Effect of the extramitochondrial adenine nucleotide pool size on oxidative phosphorylation in isolated rat liver mitochondria. Schild L; Gellerich FN Eur J Biochem; 1998 Mar; 252(3):508-12. PubMed ID: 9546667 [TBL] [Abstract][Full Text] [Related]
10. 10N-nonyl acridine orange interacts with cardiolipin and allows the quantification of this phospholipid in isolated mitochondria. Petit JM; Maftah A; Ratinaud MH; Julien R Eur J Biochem; 1992 Oct; 209(1):267-73. PubMed ID: 1396703 [TBL] [Abstract][Full Text] [Related]
11. Intracellular distribution of the fluorescent dye nonyl acridine orange responds to the mitochondrial membrane potential: implications for assays of cardiolipin and mitochondrial mass. Jacobson J; Duchen MR; Heales SJ J Neurochem; 2002 Jul; 82(2):224-33. PubMed ID: 12124423 [TBL] [Abstract][Full Text] [Related]
12. Effects of the cyanine dye 3,3'-dipropylthiocarbocyanine on mitochondrial energy conservation. Howard PH; Wilson SB Biochem J; 1979 Jun; 180(3):669-72. PubMed ID: 486140 [TBL] [Abstract][Full Text] [Related]
13. Titration of cardiolipin by either 10-N-nonyl acridine orange or acridine orange sensitizes the adenine nucleotide carrier to permeability transition. Chávez E; Zazueta C; García N; Martínez-Abundis E; Pavón N; Hernández-Esquivel L J Bioenerg Biomembr; 2008 Apr; 40(2):77-84. PubMed ID: 18415668 [TBL] [Abstract][Full Text] [Related]
14. [Effect of heliomycin on the respiration and oxidative phosphorylation of the liver mitochondria of the rat]. Konoshenko GI; Bulgakova VG; Polin AN Antibiotiki; 1983 Mar; 28(3):192-4. PubMed ID: 6305259 [TBL] [Abstract][Full Text] [Related]
15. Mitochondrial energy metabolism impairment and liver dysfunction following chronic exposure to dichlorvos. Binukumar BK; Bal A; Kandimalla R; Sunkaria A; Gill KD Toxicology; 2010 Apr; 270(2-3):77-84. PubMed ID: 20132858 [TBL] [Abstract][Full Text] [Related]
16. Cardiolipin content is involved in liver mitochondrial energy wasting associated with cancer-induced cachexia without the involvement of adenine nucleotide translocase. Julienne CM; Tardieu M; Chevalier S; Pinault M; Bougnoux P; Labarthe F; Couet C; Servais S; Dumas JF Biochim Biophys Acta; 2014 May; 1842(5):726-33. PubMed ID: 24534708 [TBL] [Abstract][Full Text] [Related]
17. Rate-controlling steps of oxidative phosphorylation in rat liver mitochondria. A synoptic approach of model and experiment. Bohnensack R; Küster U; Letko G Biochim Biophys Acta; 1982 Jun; 680(3):271-80. PubMed ID: 7104323 [TBL] [Abstract][Full Text] [Related]
18. Inhibition by suramin of mitochondrial ATP synthesis. Calcaterra NB; Vicario LR; Roveri OA Biochem Pharmacol; 1988 Jul; 37(13):2521-7. PubMed ID: 2968800 [TBL] [Abstract][Full Text] [Related]
19. Direct analysis and significance of cardiolipin transverse distribution in mitochondrial inner membranes. Petit JM; Huet O; Gallet PF; Maftah A; Ratinaud MH; Julien R Eur J Biochem; 1994 Mar; 220(3):871-9. PubMed ID: 8143741 [TBL] [Abstract][Full Text] [Related]
20. Inhibition of the adenine nucleotide translocator by N-acetyl perfluorooctane sulfonamides in vitro. O'Brien TM; Oliveira PJ; Wallace KB Toxicol Appl Pharmacol; 2008 Mar; 227(2):184-95. PubMed ID: 18048072 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]