These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 22983625)
1. Identification of rice cultivar with exclusive characteristic to Cd using a field-polluted soil and its foreground application. Zhan J; Wei S; Niu R; Li Y; Wang S; Zhu J Environ Sci Pollut Res Int; 2013 Apr; 20(4):2645-50. PubMed ID: 22983625 [TBL] [Abstract][Full Text] [Related]
2. Soil properties and cultivars determine heavy metal accumulation in rice grain and cultivars respond differently to Cd stress. Li D; Wang L; Wang Y; Li H; Chen G Environ Sci Pollut Res Int; 2019 May; 26(14):14638-14648. PubMed ID: 30877541 [TBL] [Abstract][Full Text] [Related]
3. The Role of Node Restriction on Cadmium Accumulation in the Brown Rice of 12 Chinese Rice (Oryza sativa L.) Cultivars. Huang G; Ding C; Guo F; Li X; Zhou Z; Zhang T; Wang X J Agric Food Chem; 2017 Nov; 65(47):10157-10164. PubMed ID: 29091443 [TBL] [Abstract][Full Text] [Related]
4. Low uptake affinity cultivars with biochar to tackle Cd-tainted rice--A field study over four rice seasons in Hunan, China. Chen D; Guo H; Li R; Li L; Pan G; Chang A; Joseph S Sci Total Environ; 2016 Jan; 541():1489-1498. PubMed ID: 26490528 [TBL] [Abstract][Full Text] [Related]
5. Low root/shoot (R/S) biomass ratio can be an indicator of low cadmium accumulation in the shoot of Chinese flowering cabbage (Brassica campestris L. ssp. chinensis var. utilis Tsen et Lee) cultivars. Xu ZM; Mei XQ; Tan L; Li QS; Wang LL; He BY; Guo SH; Zhou C; Ye HJ Environ Sci Pollut Res Int; 2018 Dec; 25(36):36328-36340. PubMed ID: 30368704 [TBL] [Abstract][Full Text] [Related]
6. Effects of Interaction between Cadmium (Cd) and Selenium (Se) on Grain Yield and Cd and Se Accumulation in a Hybrid Rice (Oryza sativa) System. Huang B; Xin J; Dai H; Zhou W J Agric Food Chem; 2017 Nov; 65(43):9537-9546. PubMed ID: 29016122 [TBL] [Abstract][Full Text] [Related]
7. Characterization of Cd translocation and accumulation in 19 maize cultivars grown on Cd-contaminated soil: implication of maize cultivar selection for minimal risk to human health and for phytoremediation. Wang A; Wang M; Liao Q; He X Environ Sci Pollut Res Int; 2016 Mar; 23(6):5410-9. PubMed ID: 26564197 [TBL] [Abstract][Full Text] [Related]
8. [Cd uptake and accumulation in grains by hybrid rice in two paddy soils: interactive effect of soil type and cultivars]. Gong WQ; Li LQ; Pan GX Huan Jing Ke Xue; 2006 Aug; 27(8):1647-53. PubMed ID: 17111628 [TBL] [Abstract][Full Text] [Related]
9. Variations in grain cadmium and arsenic concentrations and screening for stable low-accumulating rice cultivars from multi-environment trials. Chi Y; Li F; Tam NF; Liu C; Ouyang Y; Qi X; Li WC; Ye Z Sci Total Environ; 2018 Dec; 643():1314-1324. PubMed ID: 30189548 [TBL] [Abstract][Full Text] [Related]
10. Impacts of rapeseed dregs on Cd availability in contaminated acid soil and Cd translocation and accumulation in rice plants. Yang WT; Gu JF; Zou JL; Zhou H; Zeng QR; Liao BH Environ Sci Pollut Res Int; 2016 Oct; 23(20):20853-20861. PubMed ID: 27480164 [TBL] [Abstract][Full Text] [Related]
11. Phytoextraction by rice capable of accumulating Cd at high levels: reduction of Cd content of rice grain. Murakami M; Nakagawa F; Ae N; Ito M; Arao T Environ Sci Technol; 2009 Aug; 43(15):5878-83. PubMed ID: 19731691 [TBL] [Abstract][Full Text] [Related]
12. Micro-XRF mapping and quantitative assessment of Cd in rice (Oryza sativa L.) roots. Tefera W; Liu T; Lu L; Ge J; Webb SM; Seifu W; Tian S Ecotoxicol Environ Saf; 2020 Apr; 193():110245. PubMed ID: 32092577 [TBL] [Abstract][Full Text] [Related]
13. Identification of cadmium bioaccumulation in rice (Oryza sativa L.) by the soil-plant transfer model and species sensitivity distribution. Li K; Cao C; Ma Y; Su D; Li J Sci Total Environ; 2019 Nov; 692():1022-1028. PubMed ID: 31539934 [TBL] [Abstract][Full Text] [Related]
14. Effects of organic-inorganic amendments on the cadmium fraction in soil and its accumulation in rice (Oryza sativa L.). Li B; Yang L; Wang CQ; Zheng SQ; Xiao R; Guo Y Environ Sci Pollut Res Int; 2019 May; 26(14):13762-13772. PubMed ID: 30120729 [TBL] [Abstract][Full Text] [Related]
15. Mitigation of rice cadmium (Cd) accumulation by joint application of organic amendments and selenium (Se) in high-Cd-contaminated soils. Liu N; Jiang Z; Li X; Liu H; Li N; Wei S Chemosphere; 2020 Feb; 241():125106. PubMed ID: 31683428 [TBL] [Abstract][Full Text] [Related]
16. Differences in cadmium accumulation between indica and japonica rice cultivars in the reproductive stage. Chen H; Yang Y; Ye Y; Tao L; Fu X; Liu B; Wu Y Ecotoxicol Environ Saf; 2019 Dec; 186():109795. PubMed ID: 31648160 [TBL] [Abstract][Full Text] [Related]
17. Application of a rotation system to oilseed rape and rice fields in Cd-contaminated agricultural land to ensure food safety. Yu L; Zhu J; Huang Q; Su D; Jiang R; Li H Ecotoxicol Environ Saf; 2014 Oct; 108():287-93. PubMed ID: 25108175 [TBL] [Abstract][Full Text] [Related]
18. Cadmium remobilization from shoot to grain is related to pH of vascular bundle in rice. Zhang BL; Ouyang YN; Xu JY; Liu K Ecotoxicol Environ Saf; 2018 Jan; 147():913-918. PubMed ID: 28985652 [TBL] [Abstract][Full Text] [Related]
19. The role of root apoplastic barriers in cadmium translocation and accumulation in cultivars of rice (Oryza sativa L.) with different Cd-accumulating characteristics. Qi X; Tam NF; Li WC; Ye Z Environ Pollut; 2020 Sep; 264():114736. PubMed ID: 32417578 [TBL] [Abstract][Full Text] [Related]
20. Phytoextraction by a high-Cd-accumulating rice: reduction of Cd content of soybean seeds. Murakami M; Ae N; Ishikawa S; Ibaraki T; Ito M Environ Sci Technol; 2008 Aug; 42(16):6167-72. PubMed ID: 18767682 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]