BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 22984404)

  • 1. Efficient universal computing architectures for decoding neural activity.
    Rapoport BI; Turicchia L; Wattanapanitch W; Davidson TJ; Sarpeshkar R
    PLoS One; 2012; 7(9):e42492. PubMed ID: 22984404
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A biomimetic adaptive algorithm and low-power architecture for implantable neural decoders.
    Rapoport BI; Wattanapanitch W; Penagos HL; Musallam S; Andersen RA; Sarpeshkar R
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():4214-7. PubMed ID: 19964345
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Field-programmable gate array implementation of a probabilistic neural network for motor cortical decoding in rats.
    Zhou F; Liu J; Yu Y; Tian X; Liu H; Hao Y; Zhang S; Chen W; Dai J; Zheng X
    J Neurosci Methods; 2010 Jan; 185(2):299-306. PubMed ID: 19879294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An implantable VLSI architecture for real time spike sorting in cortically controlled Brain Machine Interfaces.
    Aghagolzadeh M; Zhang F; Oweiss K
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():1569-72. PubMed ID: 21096383
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Minimizing data transfer with sustained performance in wireless brain-machine interfaces.
    Thorbergsson PT; Garwicz M; Schouenborg J; Johansson AJ
    J Neural Eng; 2012 Jun; 9(3):036005. PubMed ID: 22523005
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A symbiotic brain-machine interface through value-based decision making.
    Mahmoudi B; Sanchez JC
    PLoS One; 2011 Mar; 6(3):e14760. PubMed ID: 21423797
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved multi-unit decoding at the brain-machine interface using population temporal linear filtering.
    Herzfeld DJ; Beardsley SA
    J Neural Eng; 2010 Aug; 7(4):046012. PubMed ID: 20644245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enabling Low-Power, Multi-Modal Neural Interfaces Through a Common, Low-Bandwidth Feature Space.
    Irwin ZT; Thompson DE; Schroeder KE; Tat DM; Hassani A; Bullard AJ; Woo SL; Urbanchek MG; Sachs AJ; Cederna PS; Stacey WC; Patil PG; Chestek CA
    IEEE Trans Neural Syst Rehabil Eng; 2016 May; 24(5):521-31. PubMed ID: 26600160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A benchtop system to assess the feasibility of a fully independent and implantable brain-machine interface.
    Wang PT; Camacho E; Wang M; Li Y; Shaw SJ; Armacost M; Gong H; Kramer D; Lee B; Andersen RA; Liu CY; Heydari P; Nenadic Z; Do AH
    J Neural Eng; 2019 Nov; 16(6):066043. PubMed ID: 31585451
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Fully Implantable, Programmable and Multimodal Neuroprocessor for Wireless, Cortically Controlled Brain-Machine Interface Applications.
    Zhang F; Aghagolzadeh M; Oweiss K
    J Signal Process Syst; 2012 Dec; 69(3):351-361. PubMed ID: 23050029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modular particle filtering FPGA hardware architecture for brain machine interfaces.
    Mountney J; Obeid I; Silage D
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4617-20. PubMed ID: 22255366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Runtime Programmable and Memory Bandwidth Optimized FPGA-Based Coprocessor for Deep Convolutional Neural Network.
    Shah N; Chaudhari P; Varghese K
    IEEE Trans Neural Netw Learn Syst; 2018 Dec; 29(12):5922-5934. PubMed ID: 29993989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep compressive autoencoder for action potential compression in large-scale neural recording.
    Wu T; Zhao W; Keefer E; Yang Z
    J Neural Eng; 2018 Dec; 15(6):066019. PubMed ID: 30215605
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Towards in vivo neural decoding.
    Valencia D; Alimohammad A
    Biomed Eng Lett; 2022 May; 12(2):185-195. PubMed ID: 35529345
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Fully Implantable Wireless ECoG 128-Channel Recording Device for Human Brain-Machine Interfaces: W-HERBS.
    Matsushita K; Hirata M; Suzuki T; Ando H; Yoshida T; Ota Y; Sato F; Morris S; Sugata H; Goto T; Yanagisawa T; Yoshimine T
    Front Neurosci; 2018; 12():511. PubMed ID: 30131666
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Hardware-Efficient Scalable Spike Sorting Neural Signal Processor Module for Implantable High-Channel-Count Brain Machine Interfaces.
    Yang Y; Boling S; Mason AJ
    IEEE Trans Biomed Circuits Syst; 2017 Aug; 11(4):743-754. PubMed ID: 28541908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptive quantization of local field potentials for wireless implants in freely moving animals: an open-source neural recording device.
    Martinez D; Clément M; Messaoudi B; Gervasoni D; Litaudon P; Buonviso N
    J Neural Eng; 2018 Apr; 15(2):025001. PubMed ID: 29219118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Frameworks for Efficient Brain-Computer Interfacing.
    Valencia D; Thies J; Alimohammad A
    IEEE Trans Biomed Circuits Syst; 2019 Dec; 13(6):1714-1722. PubMed ID: 31613780
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FPGA implementation of deep-learning recurrent neural networks with sub-millisecond real-time latency for BCI-decoding of large-scale neural sensors (104 nodes).
    Heelan C; Nurmikko AV; Truccolo W
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1070-1073. PubMed ID: 30440576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parallel field programmable gate array particle filtering architecture for real-time neural signal processing.
    Mountney J; Silage D; Obeid I
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():2674-7. PubMed ID: 21096196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.