BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 22984807)

  • 1. Natural product disaccharide engineering through tandem glycosyltransferase catalysis reversibility and neoglycosylation.
    Peltier-Pain P; Marchillo K; Zhou M; Andes DR; Thorson JS
    Org Lett; 2012 Oct; 14(19):5086-9. PubMed ID: 22984807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploiting the reversibility of natural product glycosyltransferase-catalyzed reactions.
    Zhang C; Griffith BR; Fu Q; Albermann C; Fu X; Lee IK; Li L; Thorson JS
    Science; 2006 Sep; 313(5791):1291-4. PubMed ID: 16946071
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deconstructing vancomycin.
    Walsh C
    Science; 1999 Apr; 284(5413):442-3. PubMed ID: 10232990
    [No Abstract]   [Full Text] [Related]  

  • 4. Leloir glycosyltransferases of natural product C-glycosylation: structure, mechanism and specificity.
    Tegl G; Nidetzky B
    Biochem Soc Trans; 2020 Aug; 48(4):1583-1598. PubMed ID: 32657344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disaccharide analogs as probes for glycosyltransferases in Mycobacterium tuberculosis.
    Pathak AK; Pathak V; Seitz L; Gurcha SS; Besra GS; Riordan JM; Reynolds RC
    Bioorg Med Chem; 2007 Aug; 15(16):5629-50. PubMed ID: 17544276
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymatic glycosylation of vancomycin aglycon: completion of a total synthesis of vancomycin and N- and C-terminus substituent effects of the aglycon substrate.
    Nakayama A; Okano A; Feng Y; Collins JC; Collins KC; Walsh CT; Boger DL
    Org Lett; 2014 Jul; 16(13):3572-5. PubMed ID: 24954524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two Trifunctional Leloir Glycosyltransferases as Biocatalysts for Natural Products Glycodiversification.
    Pandey RP; Bashyal P; Parajuli P; Yamaguchi T; Sohng JK
    Org Lett; 2019 Oct; 21(19):8058-8064. PubMed ID: 31550168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rational design of an aryl-C-glycoside catalyst from a natural product O-glycosyltransferase.
    Härle J; Günther S; Lauinger B; Weber M; Kammerer B; Zechel DL; Luzhetskyy A; Bechthold A
    Chem Biol; 2011 Apr; 18(4):520-30. PubMed ID: 21513888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The structural biology of enzymes involved in natural product glycosylation.
    Singh S; Phillips GN; Thorson JS
    Nat Prod Rep; 2012 Oct; 29(10):1201-37. PubMed ID: 22688446
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A programmable one-pot oligosaccharide synthesis for diversifying the sugar domains of natural products: a case study of vancomycin.
    Ritter TK; Mong KK; Liu H; Nakatani T; Wong CH
    Angew Chem Int Ed Engl; 2003 Oct; 42(38):4657-60. PubMed ID: 14533156
    [No Abstract]   [Full Text] [Related]  

  • 11. Redesign of antifungal polyene glycosylation: engineered biosynthesis of disaccharide-modified NPP.
    Kim HJ; Kang SH; Choi SS; Kim ES
    Appl Microbiol Biotechnol; 2017 Jun; 101(12):5131-5137. PubMed ID: 28488115
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting Bacterial Cell Wall Peptidoglycan Synthesis by Inhibition of Glycosyltransferase Activity.
    Mesleh MF; Rajaratnam P; Conrad M; Chandrasekaran V; Liu CM; Pandya BA; Hwang YS; Rye PT; Muldoon C; Becker B; Zuegg J; Meutermans W; Moy TI
    Chem Biol Drug Des; 2016 Feb; 87(2):190-9. PubMed ID: 26358369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of distal sugar and interglycosidic linkage of disaccharides on the activity of proline rich antimicrobial glycopeptides.
    Lele DS; Dwivedi R; Kumari S; Kaur KJ
    J Pept Sci; 2015 Nov; 21(11):833-44. PubMed ID: 26424213
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recombinant E. coli prototype strains for in vivo glycorandomization.
    Williams GJ; Yang J; Zhang C; Thorson JS
    ACS Chem Biol; 2011 Jan; 6(1):95-100. PubMed ID: 20886903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineered biosynthesis of disaccharide-modified polyene macrolides.
    De Poire E; Stephens N; Rawlings B; Caffrey P
    Appl Environ Microbiol; 2013 Oct; 79(19):6156-9. PubMed ID: 23913424
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzymatic synthesis of vancomycin derivatives using galactosyltransferase and sialyltransferase.
    Oh TJ; Kim DH; Kang SY; Yamaguchi T; Sohng JK
    J Antibiot (Tokyo); 2011 Jan; 64(1):103-9. PubMed ID: 21119677
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neoglycorandomization and chemoenzymatic glycorandomization: two complementary tools for natural product diversification.
    Langenhan JM; Griffith BR; Thorson JS
    J Nat Prod; 2005 Nov; 68(11):1696-711. PubMed ID: 16309329
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glycosyltransferases: mechanisms and applications in natural product development.
    Liang DM; Liu JH; Wu H; Wang BB; Zhu HJ; Qiao JJ
    Chem Soc Rev; 2015 Nov; 44(22):8350-74. PubMed ID: 26330279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A systematic investigation of the synthetic utility of glycopeptide glycosyltransferases.
    Oberthür M; Leimkuhler C; Kruger RG; Lu W; Walsh CT; Kahne D
    J Am Chem Soc; 2005 Aug; 127(30):10747-52. PubMed ID: 16045364
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Model for antibiotic optimization via neoglycosylation: synthesis of liponeoglycopeptides active against VRE.
    Griffith BR; Krepel C; Fu X; Blanchard S; Ahmed A; Edmiston CE; Thorson JS
    J Am Chem Soc; 2007 Jul; 129(26):8150-5. PubMed ID: 17564440
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.