These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
462 related articles for article (PubMed ID: 22984941)
1. External heavy-atomic construction of photosensitizer nanoparticles for enhanced in vitro photodynamic therapy of cancer. Zhou L; Wei S; Ge X; Zhou J; Yu B; Shen J J Phys Chem B; 2012 Oct; 116(42):12744-9. PubMed ID: 22984941 [TBL] [Abstract][Full Text] [Related]
2. Internal heavy atom effect of Au(III) and Pt(IV) on hypocrellin A for enhanced in vitro photodynamic therapy of cancer. Zhou L; Ge X; Liu J; Zhou J; Wei S; Li F; Shen J Bioorg Med Chem Lett; 2013 Oct; 23(19):5317-24. PubMed ID: 23978649 [TBL] [Abstract][Full Text] [Related]
3. Graphene oxide noncovalent photosensitizer and its anticancer activity in vitro. Zhou L; Wang W; Tang J; Zhou JH; Jiang HJ; Shen J Chemistry; 2011 Oct; 17(43):12084-91. PubMed ID: 21915922 [TBL] [Abstract][Full Text] [Related]
4. A new sol-gel silica nanovehicle preparation for photodynamic therapy in vitro. Zhou L; Liu JH; Zhang J; Wei SH; Feng YY; Zhou JH; Yu BY; Shen J Int J Pharm; 2010 Feb; 386(1-2):131-7. PubMed ID: 19922781 [TBL] [Abstract][Full Text] [Related]
5. 808 nm Light-triggered and hyaluronic acid-targeted dual-photosensitizers nanoplatform by fully utilizing Nd(3+)-sensitized upconversion emission with enhanced anti-tumor efficacy. Hou Z; Deng K; Li C; Deng X; Lian H; Cheng Z; Jin D; Lin J Biomaterials; 2016 Sep; 101():32-46. PubMed ID: 27267626 [TBL] [Abstract][Full Text] [Related]
6. A new near infrared photosensitizing nanoplatform containing blue-emitting up-conversion nanoparticles and hypocrellin A for photodynamic therapy of cancer cells. Jin S; Zhou L; Gu Z; Tian G; Yan L; Ren W; Yin W; Liu X; Zhang X; Hu Z; Zhao Y Nanoscale; 2013 Dec; 5(23):11910-8. PubMed ID: 24129918 [TBL] [Abstract][Full Text] [Related]
7. Combination of chemotherapy and photodynamic therapy using graphene oxide as drug delivery system. Zhou L; Zhou L; Wei S; Ge X; Zhou J; Jiang H; Li F; Shen J J Photochem Photobiol B; 2014 Jun; 135():7-16. PubMed ID: 24792568 [TBL] [Abstract][Full Text] [Related]
8. A nanoencapsulated hypocrellin A prepared by an improved microemulsion method for photodynamic treatment. Zhou L; Ning YW; Wei SH; Feng YY; Zhou JH; Yu BY; Shen J J Mater Sci Mater Med; 2010 Jul; 21(7):2095-101. PubMed ID: 20364361 [TBL] [Abstract][Full Text] [Related]
9. Ultrasound-Enhanced Self-Exciting Photodynamic Therapy Based on Hypocrellin B. Ding Y; Liu W; Wu J; Zheng X; Ge J; Ren H; Zhang W; Lee CS; Wang P Chem Asian J; 2021 May; 16(10):1221-1224. PubMed ID: 33881805 [TBL] [Abstract][Full Text] [Related]
10. Mitochondria-targeting photosensitizer-encapsulated amorphous nanocage as a bimodal reagent for drug delivery and biodiagnose in vitro. Zhou L; Liu JH; Ma F; Wei SH; Feng YY; Zhou JH; Yu BY; Shen J Biomed Microdevices; 2010 Aug; 12(4):655-63. PubMed ID: 20300855 [TBL] [Abstract][Full Text] [Related]
11. Heavy-atomic construction of photosensitizer nanoparticles for enhanced photodynamic therapy of cancer. Lim CK; Shin J; Lee YD; Kim J; Park H; Kwon IC; Kim S Small; 2011 Jan; 7(1):112-8. PubMed ID: 21132707 [TBL] [Abstract][Full Text] [Related]
12. Complexation of Hypocrellin A with Al3+ in water solution and the photodynamic therapy study. Ma F; Huang H; Ge X; Yang X; Yang C; Han L; Zhou J; Zhou L Bioorg Med Chem Lett; 2013 Mar; 23(6):1689-92. PubMed ID: 23411082 [TBL] [Abstract][Full Text] [Related]
13. Selective Photodynamic Effects on Breast Cancer Cells Provided by p123 Pluronic®- Based Nanoparticles Modulating Hypericin Delivery. Damke GMZF; Souza RP; Montanha MC; Damke E; Gonçalves RS; César GB; Kimura E; Caetano W; Hioka N; Consolaro MEL Anticancer Agents Med Chem; 2020; 20(11):1352-1367. PubMed ID: 30387402 [TBL] [Abstract][Full Text] [Related]
14. Hypocrellin B-based activatable photosensitizers for specific photodynamic effects against high H Kitamura T; Nakata H; Takahashi D; Toshima K Chem Commun (Camb); 2021 Dec; 58(2):242-245. PubMed ID: 34850796 [TBL] [Abstract][Full Text] [Related]
15. Quantitative and site-directed chemical modification of hypocrellins toward direct drug delivery and effective photodynamic activity. Deng H; Liu X; Xie J; Yin R; Huang N; Gu Y; Zhao J J Med Chem; 2012 Mar; 55(5):1910-9. PubMed ID: 22352922 [TBL] [Abstract][Full Text] [Related]
16. Hypocrellin-loaded gold nanocages with high two-photon efficiency for photothermal/photodynamic cancer therapy in vitro. Gao L; Fei J; Zhao J; Li H; Cui Y; Li J ACS Nano; 2012 Sep; 6(9):8030-40. PubMed ID: 22931130 [TBL] [Abstract][Full Text] [Related]
17. BODIPY-doped silica nanoparticles with reduced dye leakage and enhanced singlet oxygen generation. Wang Z; Hong X; Zong S; Tang C; Cui Y; Zheng Q Sci Rep; 2015 Jul; 5():12602. PubMed ID: 26211417 [TBL] [Abstract][Full Text] [Related]
18. A comprehensive review on singlet oxygen generation in nanomaterials and conjugated polymers for photodynamic therapy in the treatment of cancer. Singh N; Sen Gupta R; Bose S Nanoscale; 2024 Feb; 16(7):3243-3268. PubMed ID: 38265094 [TBL] [Abstract][Full Text] [Related]
19. A novel elsinochrome A derivative: a study of drug delivery and photodynamic activity. Zhang Y; Xie J; Zhang L; Li C; Chen H; Gu Y; Zhao J Photochem Photobiol Sci; 2009 Dec; 8(12):1676-82. PubMed ID: 20024164 [TBL] [Abstract][Full Text] [Related]
20. Polyethylene glycol-modified gelatin/polylactic acid nanoparticles for enhanced photodynamic efficacy of a hypocrellin derivative in vitro. Babu A; Periasamy J; Gunasekaran A; Kumaresan G; Naicker S; Gunasekaran P; Murugesan R J Biomed Nanotechnol; 2013 Feb; 9(2):177-92. PubMed ID: 23627044 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]