These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
249 related articles for article (PubMed ID: 22984964)
1. Kinetic stability of the streptavidin-biotin interaction enhanced in the gas phase. Deng L; Broom A; Kitova EN; Richards MR; Zheng RB; Shoemaker GK; Meiering EM; Klassen JS J Am Chem Soc; 2012 Oct; 134(40):16586-96. PubMed ID: 22984964 [TBL] [Abstract][Full Text] [Related]
2. Dissociation kinetics of the streptavidin-biotin interaction measured using direct electrospray ionization mass spectrometry analysis. Deng L; Kitova EN; Klassen JS J Am Soc Mass Spectrom; 2013 Jan; 24(1):49-56. PubMed ID: 23247970 [TBL] [Abstract][Full Text] [Related]
3. Energetic roles of hydrogen bonds at the ureido oxygen binding pocket in the streptavidin-biotin complex. Klumb LA; Chu V; Stayton PS Biochemistry; 1998 May; 37(21):7657-63. PubMed ID: 9601024 [TBL] [Abstract][Full Text] [Related]
4. Elucidating the intermolecular interactions within a desolvated protein-ligand complex. An experimental and computational study. Kitova EN; Seo M; Roy PN; Klassen JS J Am Chem Soc; 2008 Jan; 130(4):1214-26. PubMed ID: 18171060 [TBL] [Abstract][Full Text] [Related]
5. Structure-based engineering of streptavidin monomer with a reduced biotin dissociation rate. Demonte D; Drake EJ; Lim KH; Gulick AM; Park S Proteins; 2013 Sep; 81(9):1621-33. PubMed ID: 23670729 [TBL] [Abstract][Full Text] [Related]
6. Dissociation of multisubunit protein-ligand complexes in the gas phase. Evidence for ligand migration. Zhang Y; Deng L; Kitova EN; Klassen JS J Am Soc Mass Spectrom; 2013 Oct; 24(10):1573-83. PubMed ID: 23943432 [TBL] [Abstract][Full Text] [Related]
7. Absolute and relative binding free energy calculations of the interaction of biotin and its analogs with streptavidin using molecular dynamics/free energy perturbation approaches. Miyamoto S; Kollman PA Proteins; 1993 Jul; 16(3):226-45. PubMed ID: 8346190 [TBL] [Abstract][Full Text] [Related]
8. Ser45 plays an important role in managing both the equilibrium and transition state energetics of the streptavidin-biotin system. Hyre DE; Le Trong I; Freitag S; Stenkamp RE; Stayton PS Protein Sci; 2000 May; 9(5):878-85. PubMed ID: 10850797 [TBL] [Abstract][Full Text] [Related]
9. Hydrophobic protein-ligand interactions preserved in the gas phase. Liu L; Bagal D; Kitova EN; Schnier PD; Klassen JS J Am Chem Soc; 2009 Nov; 131(44):15980-1. PubMed ID: 19886690 [TBL] [Abstract][Full Text] [Related]
10. Structural studies of binding site tryptophan mutants in the high-affinity streptavidin-biotin complex. Freitag S; Le Trong I; Chilkoti A; Klumb LA; Stayton PS; Stenkamp RE J Mol Biol; 1998 May; 279(1):211-21. PubMed ID: 9636711 [TBL] [Abstract][Full Text] [Related]
11. Crystallographic analysis of a full-length streptavidin with its C-terminal polypeptide bound in the biotin binding site. Le Trong I; Humbert N; Ward TR; Stenkamp RE J Mol Biol; 2006 Feb; 356(3):738-45. PubMed ID: 16384581 [TBL] [Abstract][Full Text] [Related]
12. Stability of the homopentameric B subunits of shiga toxins 1 and 2 in solution and the gas phase as revealed by nanoelectrospray fourier transform ion cyclotron resonance mass spectrometry. Kitova EN; Daneshfar R; Marcato P; Mulvey GL; Armstrong G; Klassen JS J Am Soc Mass Spectrom; 2005 Dec; 16(12):1957-68. PubMed ID: 16242954 [TBL] [Abstract][Full Text] [Related]
13. Engineered streptavidin monomer and dimer with improved stability and function. Lim KH; Huang H; Pralle A; Park S Biochemistry; 2011 Oct; 50(40):8682-91. PubMed ID: 21892837 [TBL] [Abstract][Full Text] [Related]
14. Electronic structure, binding energy, and solvation structure of the streptavidin-biotin supramolecular complex: ONIOM and 3D-RISM study. Li Q; Gusarov S; Evoy S; Kovalenko A J Phys Chem B; 2009 Jul; 113(29):9958-67. PubMed ID: 19545155 [TBL] [Abstract][Full Text] [Related]
15. High resolution structure of streptavidin in complex with a novel high affinity peptide tag mimicking the biotin binding motif. Perbandt M; Bruns O; Vallazza M; Lamla T; Betzel Ch; Erdmann VA Proteins; 2007 Jun; 67(4):1147-53. PubMed ID: 17377987 [TBL] [Abstract][Full Text] [Related]
16. Evidence that water can reduce the kinetic stability of protein-hydrophobic ligand interactions. Liu L; Michelsen K; Kitova EN; Schnier PD; Klassen JS J Am Chem Soc; 2010 Dec; 132(50):17658-60. PubMed ID: 21121620 [TBL] [Abstract][Full Text] [Related]
17. The F130L mutation in streptavidin reduces its binding affinity to biotin through electronic polarization effect. Zeng J; Jia X; Zhang JZ; Mei Y J Comput Chem; 2013 Dec; 34(31):2677-86. PubMed ID: 24000160 [TBL] [Abstract][Full Text] [Related]
18. Gas-phase binding of non-covalent protein complexes between bovine pancreatic trypsin inhibitor and its target enzymes studied by electrospray ionization tandem mass spectrometry. Nesatyy VJ J Mass Spectrom; 2001 Aug; 36(8):950-9. PubMed ID: 11523096 [TBL] [Abstract][Full Text] [Related]
19. Method for stabilizing protein-ligand complexes in nanoelectrospray ionization mass spectrometry. Sun J; Kitova EN; Klassen JS Anal Chem; 2007 Jan; 79(2):416-25. PubMed ID: 17222003 [TBL] [Abstract][Full Text] [Related]
20. Effect of streptavidins with varying biotin binding affinities on the properties of biotinylated gramicidin channels. Antonenko YN; Rokitskaya TI; Kotova EA; Reznik GO; Sano T; Cantor CR Biochemistry; 2004 Apr; 43(15):4575-82. PubMed ID: 15078104 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]