These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 22985170)

  • 1. Highly concentrated aqueous suspensions of graphene through ultrasonic exfoliation with continuous surfactant addition.
    Notley SM
    Langmuir; 2012 Oct; 28(40):14110-3. PubMed ID: 22985170
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Competitive adsorption of surfactants and hydrophilic silica particles at the oil-water interface: interfacial tension and contact angle studies.
    Pichot R; Spyropoulos F; Norton IT
    J Colloid Interface Sci; 2012 Jul; 377(1):396-405. PubMed ID: 22487228
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synergism in the spreading of hydrocarbon-chain surfactants on polyethylene film-anionic and cationic mixtures by a two-step procedure.
    Wu Y; Rosen MJ
    Langmuir; 2005 Mar; 21(6):2342-8. PubMed ID: 15752024
    [TBL] [Abstract][Full Text] [Related]  

  • 5. pH dependent stability of aqueous suspensions of graphene with adsorbed weakly ionisable cationic polyelectrolyte.
    Griffith A; Notley SM
    J Colloid Interface Sci; 2012 Mar; 369(1):210-5. PubMed ID: 22196352
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of branching on the interfacial properties of nonionic hydrocarbon surfactants at the air-water and carbon dioxide-water interfaces.
    Adkins SS; Chen X; Nguyen QP; Sanders AW; Johnston KP
    J Colloid Interface Sci; 2010 Jun; 346(2):455-63. PubMed ID: 20381061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adsorption of phenanthrene on multilayer graphene as affected by surfactant and exfoliation.
    Zhao J; Wang Z; Zhao Q; Xing B
    Environ Sci Technol; 2014; 48(1):331-9. PubMed ID: 24328362
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of charged colloidal particles on adsorption of surfactants at oil-water interface.
    Wang W; Zhou Z; Nandakumar K; Xu Z; Masliyah JH
    J Colloid Interface Sci; 2004 Jun; 274(2):625-30. PubMed ID: 15144838
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Liquid exfoliation of defect-free graphene.
    Coleman JN
    Acc Chem Res; 2013 Jan; 46(1):14-22. PubMed ID: 22433117
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of anionic surfactant and short-chain alcohol mixtures on adsorption at quartz/water and water/air interfaces and the wettability of quartz.
    Zdziennicka A; Jańczuk B
    J Colloid Interface Sci; 2011 Feb; 354(1):396-404. PubMed ID: 21055764
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The influence of ionic and nonionic surfactants on aggregative stability and electrical surface properties of aqueous suspensions of titanium dioxide.
    Tkachenko NH; Yaremko ZM; Bellmann C; Soltys MM
    J Colloid Interface Sci; 2006 Jul; 299(2):686-95. PubMed ID: 16616181
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adsorption Behavior of Cationic and Nonionic Surfactant Mixtures at the Alumina-Water Interface.
    Huang L; Maltesh C; Somasundaran P
    J Colloid Interface Sci; 1996 Jan; 177(1):222-228. PubMed ID: 10479435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Behavior of cationic surfactants and short chain alcohols in mixed surface layers at water-air and polymer-water interfaces with regard to polymer wettability. I. Adsorption at water-air interface.
    Zdziennicka A; Jańczuk B
    J Colloid Interface Sci; 2010 Sep; 349(1):374-83. PubMed ID: 20538282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Graphene via sonication assisted liquid-phase exfoliation.
    Ciesielski A; Samorì P
    Chem Soc Rev; 2014 Jan; 43(1):381-98. PubMed ID: 24002478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular insights into the surface morphology, layering structure, and aggregation kinetics of surfactant-stabilized graphene dispersions.
    Lin S; Shih CJ; Strano MS; Blankschtein D
    J Am Chem Soc; 2011 Aug; 133(32):12810-23. PubMed ID: 21736367
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monte Carlo simulations of Lennard-Jones nonionic surfactant adsorption at the liquid/vapor interface.
    Howes AJ; Radke CJ
    Langmuir; 2007 Feb; 23(4):1835-44. PubMed ID: 17279664
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Method of ultrasound-assisted liquid-phase exfoliation to prepare graphene.
    Gu X; Zhao Y; Sun K; Vieira CLZ; Jia Z; Cui C; Wang Z; Walsh A; Huang S
    Ultrason Sonochem; 2019 Nov; 58():104630. PubMed ID: 31450336
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Achieving high yield of graphene nanoplatelets in poloxamer-assisted ultrasonication of graphite in water.
    Giglio CS; Osazuwa O; Kontopoulou M; Docoslis A
    J Colloid Interface Sci; 2019 Mar; 539():107-117. PubMed ID: 30576986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enrichment of surfactant from its aqueous solution using ultrasonic atomization.
    Takaya H; Nii S; Kawaizumi F; Takahashi K
    Ultrason Sonochem; 2005 Aug; 12(6):483-7. PubMed ID: 15848112
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly concentrated aqueous dispersions of graphene exfoliated by sodium taurodeoxycholate: dispersion behavior and potential application as a catalyst support for the oxygen-reduction reaction.
    Sun Z; Masa J; Liu Z; Schuhmann W; Muhler M
    Chemistry; 2012 May; 18(22):6972-8. PubMed ID: 22504902
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.