These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 22985332)
1. Impact of Natural Organic Matter on H2O2-Mediated Oxidation of Fe(II) in Coastal Seawaters. Miller CJ; Vincent Lee SM; Rose AL; Waite TD Environ Sci Technol; 2012 Oct; 46(20):11078-85. PubMed ID: 22985332 [TBL] [Abstract][Full Text] [Related]
2. Role of heterogeneous precipitation in determining the nature of products formed on oxidation of Fe(II) in seawater containing natural organic matter. Bligh MW; Waite TD Environ Sci Technol; 2010 Sep; 44(17):6667-73. PubMed ID: 20690668 [TBL] [Abstract][Full Text] [Related]
3. Hydroxyl radical production by H2O2-mediated oxidation of Fe(II) complexed by Suwannee River fulvic acid under circumneutral freshwater conditions. Miller CJ; Rose AL; Waite TD Environ Sci Technol; 2013 Jan; 47(2):829-35. PubMed ID: 23231429 [TBL] [Abstract][Full Text] [Related]
4. Mechanism and kinetics of dark iron redox transformations in previously photolyzed acidic natural organic matter solutions. Garg S; Ito H; Rose AL; Waite TD Environ Sci Technol; 2013 Feb; 47(4):1861-9. PubMed ID: 23331166 [TBL] [Abstract][Full Text] [Related]
5. Oxygen and superoxide-mediated redox kinetics of iron complexed by humic substances in coastal seawater. Fujii M; Rose AL; Waite TD; Omura T Environ Sci Technol; 2010 Dec; 44(24):9337-42. PubMed ID: 21077605 [TBL] [Abstract][Full Text] [Related]
6. Oxidation of Fe(II) in natural waters at high nutrient concentrations. González AG; Santana-Casiano JM; Pérez N; González-Dávila M Environ Sci Technol; 2010 Nov; 44(21):8095-101. PubMed ID: 20886829 [TBL] [Abstract][Full Text] [Related]
7. Iron redox transformations in continuously photolyzed acidic solutions containing natural organic matter: kinetic and mechanistic insights. Garg S; Jiang C; Miller CJ; Rose AL; Waite TD Environ Sci Technol; 2013 Aug; 47(16):9190-7. PubMed ID: 23879362 [TBL] [Abstract][Full Text] [Related]
8. Hydroquinone-Mediated Redox Cycling of Iron and Concomitant Oxidation of Hydroquinone in Oxic Waters under Acidic Conditions: Comparison with Iron-Natural Organic Matter Interactions. Jiang C; Garg S; Waite TD Environ Sci Technol; 2015 Dec; 49(24):14076-84. PubMed ID: 26579728 [TBL] [Abstract][Full Text] [Related]
9. Rapid reaction of nanomolar Mn(II) with superoxide radical in seawater and simulated freshwater. Hansard SP; Easter HD; Voelker BM Environ Sci Technol; 2011 Apr; 45(7):2811-7. PubMed ID: 21375329 [TBL] [Abstract][Full Text] [Related]
10. Effect of halide ions and carbonates on organic contaminant degradation by hydroxyl radical-based advanced oxidation processes in saline waters. Grebel JE; Pignatello JJ; Mitch WA Environ Sci Technol; 2010 Sep; 44(17):6822-8. PubMed ID: 20681567 [TBL] [Abstract][Full Text] [Related]
11. Role of ultra-violet radiation, mercury and copper on the stability of dissolved glutathione in natural and artificial freshwater and saltwater. Moingt M; Bressac M; Bélanger D; Amyot M Chemosphere; 2010 Sep; 80(11):1314-20. PubMed ID: 20598342 [TBL] [Abstract][Full Text] [Related]
12. Impact of halide ions on natural organic matter-sensitized photolysis of 17β-estradiol in saline waters. Grebel JE; Pignatello JJ; Mitch WA Environ Sci Technol; 2012 Jul; 46(13):7128-34. PubMed ID: 22681742 [TBL] [Abstract][Full Text] [Related]
13. Influences of redox transformation, metal complexation and aggregation of fulvic acid and humic acid on Cr(VI) and As(V) removal by zero-valent iron. Mak MS; Lo IM Chemosphere; 2011 Jun; 84(2):234-40. PubMed ID: 21530997 [TBL] [Abstract][Full Text] [Related]
14. Importance of allochthonous and autochthonous dissolved organic matter in Fe(II) oxidation: A case study in Shizugawa Bay watershed, Japan. Lee YP; Fujii M; Kikuchi T; Natsuike M; Ito H; Watanabe T; Yoshimura C Chemosphere; 2017 Aug; 180():221-228. PubMed ID: 28410502 [TBL] [Abstract][Full Text] [Related]
15. Effect of natural organic matter on iron uptake by the freshwater cyanobacterium Microcystis aeruginosa. Fujii M; Dang TC; Bligh MW; Rose AL; Waite TD Environ Sci Technol; 2014; 48(1):365-74. PubMed ID: 24261844 [TBL] [Abstract][Full Text] [Related]
16. Kinetics of Cu(II) reduction by natural organic matter. Pham AN; Rose AL; Waite TD J Phys Chem A; 2012 Jun; 116(25):6590-9. PubMed ID: 22574891 [TBL] [Abstract][Full Text] [Related]
17. Effect of Chloride and Suwannee River Fulvic Acid on Cu Speciation: Implications to Cu Redox Transformations in Simulated Natural Waters. Xing G; Garg S; Miller CJ; Pham AN; Waite TD Environ Sci Technol; 2020 Feb; 54(4):2334-2343. PubMed ID: 31999104 [TBL] [Abstract][Full Text] [Related]
18. Differences in photochemistry between seawater and freshwater for two natural organic matter samples. Stirchak LT; Moor KJ; McNeill K; Donaldson DJ Environ Sci Process Impacts; 2019 Jan; 21(1):28-39. PubMed ID: 30575831 [TBL] [Abstract][Full Text] [Related]
19. Role of iron species in the photo-transformation of phenol in artificial and natural seawater. Calza P; Massolino C; Pelizzetti E; Minero C Sci Total Environ; 2012 Jun; 426():281-8. PubMed ID: 22503675 [TBL] [Abstract][Full Text] [Related]
20. Oxidation of Cu(I) in seawater at low oxygen concentrations. Pérez-Almeida N; González-Dávila M; Santana-Casiano JM; González AG; Suárez de Tangil M Environ Sci Technol; 2013 Feb; 47(3):1239-47. PubMed ID: 23259733 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]