These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 22985595)

  • 1. A simple and rapid fluorescent neuraminidase enzymatic assay on a microfluidic chip.
    Zhang F; Turgeon N; Toulouse MJ; Duchaine C; Li D
    Diagn Microbiol Infect Dis; 2012 Nov; 74(3):263-6. PubMed ID: 22985595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Validation of a fully integrated microfluidic array device for influenza A subtype identification and sequencing.
    Liu RH; Lodes MJ; Nguyen T; Siuda T; Slota M; Fuji HS; McShea A
    Anal Chem; 2006 Jun; 78(12):4184-93. PubMed ID: 16771549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensitive Mie scattering immunoagglutination assay of porcine reproductive and respiratory syndrome virus (PRRSV) from lung tissue samples in a microfluidic chip.
    Song JY; Lee CH; Choi EJ; Kim K; Yoon JY
    J Virol Methods; 2011 Dec; 178(1-2):31-8. PubMed ID: 21871925
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescent Neuraminidase Assay Based on Supramolecular Dye Capture After Enzymatic Cleavage.
    Liu W; Gómez-Durán CFA; Smith BD
    J Am Chem Soc; 2017 May; 139(18):6390-6395. PubMed ID: 28426220
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of a microplate reader compatible microfluidic chip for ELISA.
    Hou F; Zhang Q; Yang J; Li X; Yang X; Wang S; Cheng Z
    Biomed Microdevices; 2012 Aug; 14(4):729-37. PubMed ID: 22526682
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integration of neuraminidase inhibitor assay into a single-step operation using a combinable poly(dimethylsiloxane) capillary sensor.
    Ishimoto T; Jigawa K; Henares TG; Endo T; Hisamoto H
    Analyst; 2013 Jun; 138(11):3158-62. PubMed ID: 23571501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and inter-laboratory validation study of an improved new real-time PCR assay with internal control for detection and laboratory diagnosis of African swine fever virus.
    Tignon M; Gallardo C; Iscaro C; Hutet E; Van der Stede Y; Kolbasov D; De Mia GM; Le Potier MF; Bishop RP; Arias M; Koenen F
    J Virol Methods; 2011 Dec; 178(1-2):161-70. PubMed ID: 21946285
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel fluorescent probe for NAD-consuming enzymes.
    Pergolizzi G; Butt JN; Bowater RP; Wagner GK
    Chem Commun (Camb); 2011 Dec; 47(47):12655-7. PubMed ID: 22042207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New generation of amino coumarin methyl sulfonate-based fluorogenic substrates for amidase assays in droplet-based microfluidic applications.
    Woronoff G; El Harrak A; Mayot E; Schicke O; Miller OJ; Soumillion P; Griffiths AD; Ryckelynck M
    Anal Chem; 2011 Apr; 83(8):2852-7. PubMed ID: 21413778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Combinable poly(dimethyl siloxane) capillary sensor array for single-step and multiple enzyme inhibitor assays.
    Uchiyama Y; Okubo F; Akai K; Fujii Y; Henares TG; Kawamura K; Yao T; Endo T; Hisamoto H
    Lab Chip; 2012 Jan; 12(1):204-8. PubMed ID: 22086459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic device as a new platform for immunofluorescent detection of viruses.
    Liu WT; Zhu L; Qin QW; Zhang Q; Feng H; Ang S
    Lab Chip; 2005 Nov; 5(11):1327-30. PubMed ID: 16234960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Automatic bio-sampling chips integrated with micro-pumps and micro-valves for disease detection.
    Wang CH; Lee GB
    Biosens Bioelectron; 2005 Sep; 21(3):419-25. PubMed ID: 16076430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A polymer microfluidic chip for quantitative detection of multiple water- and foodborne pathogens using real-time fluorogenic loop-mediated isothermal amplification.
    Tourlousse DM; Ahmad F; Stedtfeld RD; Seyrig G; Tiedje JM; Hashsham SA
    Biomed Microdevices; 2012 Aug; 14(4):769-78. PubMed ID: 22566273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cross-talk problem on a fluorescence multi-channel microfluidic chip system.
    Irawan R; Tjin SC; Yager P; Zhang D
    Biomed Microdevices; 2005 Sep; 7(3):205-11. PubMed ID: 16133808
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An RNA-DNA hybridization assay chip with electrokinetically controlled oil droplet valves for sequential microfluidic operations.
    Weng X; Jiang H; Chon CH; Chen S; Cao H; Li D
    J Biotechnol; 2011 Sep; 155(3):330-7. PubMed ID: 21820019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A suction-type microfluidic immunosensing chip for rapid detection of the dengue virus.
    Weng CH; Huang TB; Huang CC; Yeh CS; Lei HY; Lee GB
    Biomed Microdevices; 2011 Jun; 13(3):585-95. PubMed ID: 21448655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid protein concentration, efficient fluorescence labeling and purification on a micro/nanofluidics chip.
    Wang C; Ouyang J; Ye DK; Xu JJ; Chen HY; Xia XH
    Lab Chip; 2012 Aug; 12(15):2664-71. PubMed ID: 22648530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuraminidase in juvenile calf thymus: determination and characterization by a continuous fluorometric assay procedure.
    Bieringer K; Zoch E
    Thymus; 1990 Jun; 15(4):233-40. PubMed ID: 2114677
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorogenic assay of alkaline phosphatase activity based on the modulation of excited-state intramolecular proton transfer.
    Park J; Helal A; Kim HS; Kim Y
    Bioorg Med Chem Lett; 2012 Sep; 22(17):5541-4. PubMed ID: 22853994
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid microchip-based electrophoretic immunoassays for the detection of swine influenza virus.
    Reichmuth DS; Wang SK; Barrett LM; Throckmorton DJ; Einfeld W; Singh AK
    Lab Chip; 2008 Aug; 8(8):1319-24. PubMed ID: 18651074
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.