BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 22986537)

  • 1. In vitro selection of peptide aptamers with affinity to single-wall carbon nanotubes using a ribosome display.
    Li Z; Uzawa T; Tanaka T; Hida A; Ishibashi K; Katakura H; Kobatake E; Ito Y
    Biotechnol Lett; 2013 Jan; 35(1):39-45. PubMed ID: 22986537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polypeptide aptamer selection using a stabilized ribosome display.
    Wang W; Hara S; Liu M; Aigaki T; Shimizu S; Ito Y
    J Biosci Bioeng; 2011 Nov; 112(5):515-7. PubMed ID: 21813322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro selection of a photo-responsive peptide aptamer using ribosome display.
    Liu M; Tada S; Ito M; Abe H; Ito Y
    Chem Commun (Camb); 2012 Dec; 48(97):11871-3. PubMed ID: 23125981
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vitro selection of peptide aptamers using a ribosome display for a conducting polymer.
    Li Z; Uzawa T; Zhao H; Luo SC; Yu HH; Kobatake E; Ito Y
    J Biosci Bioeng; 2014 Apr; 117(4):501-3. PubMed ID: 24200880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isolation of Peptide aptamers to target protein function.
    Lopez-Ochoa L; Nash TE; Ramirez-Prado J; Hanley-Bowdoin L
    Methods Mol Biol; 2009; 535():333-60. PubMed ID: 19377987
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ligand-regulated peptide aptamers.
    Miller RA
    Methods Mol Biol; 2009; 535():315-31. PubMed ID: 19377988
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solubilization of single-walled carbon nanotubes using a peptide aptamer in water below the critical micelle concentration.
    Li Z; Kameda T; Isoshima T; Kobatake E; Tanaka T; Ito Y; Kawamoto M
    Langmuir; 2015 Mar; 31(11):3482-8. PubMed ID: 25746134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A dual functional peptide carrying in vitro selected catalytic and binding activities.
    Zhu L; Wang W; Zhao H; Xu M; Tada S; Uzawa T; Liu M; Ito Y
    Org Biomol Chem; 2015 Oct; 13(38):9808-12. PubMed ID: 26272651
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Affinity selection of peptide phage libraries against single-wall carbon nanohorns identifies a peptide aptamer with conformational variability.
    Kase D; Kulp JL; Yudasaka M; Evans JS; Iijima S; Shiba K
    Langmuir; 2004 Sep; 20(20):8939-41. PubMed ID: 15379530
    [No Abstract]   [Full Text] [Related]  

  • 10. Ribosome display selection of a metal-binding motif from an artificial peptide library.
    Wada A; Sawata SY; Ito Y
    Biotechnol Bioeng; 2008 Dec; 101(5):1102-7. PubMed ID: 18613123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolution of disulfide-rich peptide aptamers using cDNA display.
    Mochizuki Y; Nemoto N
    Methods Mol Biol; 2012; 805():237-50. PubMed ID: 22094809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The highly stabilized ribosome display selection of metal binding peptide aptamers.
    Wada A; Ito Y
    Nucleic Acids Symp Ser (Oxf); 2009; (53):263-4. PubMed ID: 19749361
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amino group binding peptide aptamers with double disulphide-bridged loops selected by in vitro selection using cDNA display.
    Mochizuki Y; Nishigaki K; Nemoto N
    Chem Commun (Camb); 2014 May; 50(42):5608-10. PubMed ID: 24728228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactions of in vitro selected fluorogenic peptide aptamers with calmodulin.
    Manandhar Y; Wang W; Inoue J; Hayashi N; Uzawa T; Ito Y; Aigaki T; Ito Y
    Biotechnol Lett; 2017 Mar; 39(3):375-382. PubMed ID: 27858320
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antagonistic effect of disulfide-rich peptide aptamers selected by cDNA display on interleukin-6-dependent cell proliferation.
    Nemoto N; Tsutsui C; Yamaguchi J; Ueno S; Machida M; Kobayashi T; Sakai T
    Biochem Biophys Res Commun; 2012 Apr; 421(1):129-33. PubMed ID: 22503683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selection of IgE-binding aptameric green fluorescent protein (Ap-GFP) by the ribosome display (RD) platform.
    Chen SS; Yang YM; Barankiewicz TJ
    Biochem Biophys Res Commun; 2008 Sep; 374(3):409-14. PubMed ID: 18619414
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro selection of a photoresponsive peptide aptamer to glutathione-immobilized microbeads.
    Tada S; Zang Q; Wang W; Kawamoto M; Liu M; Iwashita M; Uzawa T; Kiga D; Yamamura M; Ito Y
    J Biosci Bioeng; 2015 Feb; 119(2):137-9. PubMed ID: 25041711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rational design and biophysical characterization of thioredoxin-based aptamers: insights into peptide grafting.
    Brown CJ; Dastidar SG; See HY; Coomber DW; Ortiz-LombardĂ­a M; Verma C; Lane DP
    J Mol Biol; 2010 Jan; 395(4):871-83. PubMed ID: 19895821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selection and characterization of large collections of peptide aptamers through optimized yeast two-hybrid procedures.
    Bickle MB; Dusserre E; Moncorgé O; Bottin H; Colas P
    Nat Protoc; 2006; 1(3):1066-91. PubMed ID: 17406388
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selection of aptamers for signal transduction proteins by capillary electrophoresis.
    Tok J; Lai J; Leung T; Li SF
    Electrophoresis; 2010 Jun; 31(12):2055-62. PubMed ID: 20564698
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.