These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 22986687)

  • 21. Integrative Protein Modeling in RosettaNMR from Sparse Paramagnetic Restraints.
    Kuenze G; Bonneau R; Leman JK; Meiler J
    Structure; 2019 Nov; 27(11):1721-1734.e5. PubMed ID: 31522945
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spectral fitting for signal assignment and structural analysis of uniformly 13C-labeled solid proteins by simulated annealing based on chemical shifts and spin dynamics.
    Matsuki Y; Akutsu H; Fujiwara T
    J Biomol NMR; 2007 Aug; 38(4):325-39. PubMed ID: 17612797
    [TBL] [Abstract][Full Text] [Related]  

  • 23. TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts.
    Shen Y; Delaglio F; Cornilescu G; Bax A
    J Biomol NMR; 2009 Aug; 44(4):213-23. PubMed ID: 19548092
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Accuracy and precision of protein structures determined by magic angle spinning NMR spectroscopy: for some 'with a little help from a friend'.
    Russell RW; Fritz MP; Kraus J; Quinn CM; Polenova T; Gronenborn AM
    J Biomol NMR; 2019 Jul; 73(6-7):333-346. PubMed ID: 30847635
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A probabilistic approach for validating protein NMR chemical shift assignments.
    Wang B; Wang Y; Wishart DS
    J Biomol NMR; 2010 Jun; 47(2):85-99. PubMed ID: 20446018
    [TBL] [Abstract][Full Text] [Related]  

  • 26. PROSESS: a protein structure evaluation suite and server.
    Berjanskii M; Liang Y; Zhou J; Tang P; Stothard P; Zhou Y; Cruz J; MacDonell C; Lin G; Lu P; Wishart DS
    Nucleic Acids Res; 2010 Jul; 38(Web Server issue):W633-40. PubMed ID: 20460469
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Automated protein structure determination from NMR spectra.
    López-Méndez B; Güntert P
    J Am Chem Soc; 2006 Oct; 128(40):13112-22. PubMed ID: 17017791
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Using NMR chemical shifts as structural restraints in molecular dynamics simulations of proteins.
    Robustelli P; Kohlhoff K; Cavalli A; Vendruscolo M
    Structure; 2010 Aug; 18(8):923-33. PubMed ID: 20696393
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A novel strategy for NMR resonance assignment and protein structure determination.
    Lemak A; Gutmanas A; Chitayat S; Karra M; Farès C; Sunnerhagen M; Arrowsmith CH
    J Biomol NMR; 2011 Jan; 49(1):27-38. PubMed ID: 21161328
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quantitative evaluation of experimental NMR restraints.
    Nabuurs SB; Spronk CA; Krieger E; Maassen H; Vriend G; Vuister GW
    J Am Chem Soc; 2003 Oct; 125(39):12026-34. PubMed ID: 14505424
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Protein structure determination from NMR chemical shifts.
    Cavalli A; Salvatella X; Dobson CM; Vendruscolo M
    Proc Natl Acad Sci U S A; 2007 Jun; 104(23):9615-20. PubMed ID: 17535901
    [TBL] [Abstract][Full Text] [Related]  

  • 32. PINE-SPARKY: graphical interface for evaluating automated probabilistic peak assignments in protein NMR spectroscopy.
    Lee W; Westler WM; Bahrami A; Eghbalnia HR; Markley JL
    Bioinformatics; 2009 Aug; 25(16):2085-7. PubMed ID: 19497931
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Using Pseudocontact Shifts and Residual Dipolar Couplings as Exact NMR Restraints for the Determination of Protein Structural Ensembles.
    Camilloni C; Vendruscolo M
    Biochemistry; 2015 Dec; 54(51):7470-6. PubMed ID: 26624789
    [TBL] [Abstract][Full Text] [Related]  

  • 34. SimShiftDB; local conformational restraints derived from chemical shift similarity searches on a large synthetic database.
    Ginzinger SW; Coles M
    J Biomol NMR; 2009 Mar; 43(3):179-85. PubMed ID: 19224375
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analysis of the interface variability in NMR structure ensembles of protein-protein complexes.
    Calvanese L; D'Auria G; Vangone A; Falcigno L; Oliva R
    J Struct Biol; 2016 Jun; 194(3):317-24. PubMed ID: 26968364
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Exploring the limits of precision and accuracy of protein structures determined by nuclear magnetic resonance spectroscopy.
    Clore GM; Robien MA; Gronenborn AM
    J Mol Biol; 1993 May; 231(1):82-102. PubMed ID: 8496968
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Grid-enabled web portal for NMR structure refinement with AMBER.
    Bertini I; Case DA; Ferella L; Giachetti A; Rosato A
    Bioinformatics; 2011 Sep; 27(17):2384-90. PubMed ID: 21757462
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rapid measurement of residual dipolar couplings for fast fold elucidation of proteins.
    Rasia RM; Lescop E; Palatnik JF; Boisbouvier J; Brutscher B
    J Biomol NMR; 2011 Nov; 51(3):369-78. PubMed ID: 21915680
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improving NMR protein structure quality by Rosetta refinement: a molecular replacement study.
    Ramelot TA; Raman S; Kuzin AP; Xiao R; Ma LC; Acton TB; Hunt JF; Montelione GT; Baker D; Kennedy MA
    Proteins; 2009 Apr; 75(1):147-67. PubMed ID: 18816799
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Evaluation and Selection of Dynamic Protein Structural Ensembles with CoNSEnsX
    Dudola D; Kovács B; Gáspári Z
    Methods Mol Biol; 2020; 2112():241-254. PubMed ID: 32006289
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.