These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 2298698)

  • 41. [Effect of sodium fluoride on the glycolytic activity and metabolic end-products of Streptococcus mutans Ingbritt in a chemostat].
    Yamamoto H
    Shikwa Gakuho; 1986 Jan; 86(1):51-67. PubMed ID: 3459248
    [No Abstract]   [Full Text] [Related]  

  • 42. A requirement for ATP for beta-galactoside transport by Bacillus alcalophilus.
    Guffanti AA; Blanco R; Krulwich TA
    J Biol Chem; 1979 Feb; 254(4):1033-7. PubMed ID: 83995
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Patterns of electrochemical proton gradient formation by membrane vesicles from an obligately acidophilic bacterium.
    Guffanti AA; Mann M; Sherman TL; Krulwich TA
    J Bacteriol; 1984 Aug; 159(2):448-52. PubMed ID: 6746570
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Lactic acid excretion by
    Dashper SG; Reynolds EC
    Microbiology (Reading); 1996 Jan; 142(1):33-39. PubMed ID: 33657745
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The effect of beta-galactosides on the protonmotive force and growth of Escherichia coli.
    Ahmed S; Booth IR
    J Gen Microbiol; 1983 Aug; 129(8):2521-9. PubMed ID: 6313859
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Simultaneous monitoring of intracellular pH and proton excretion during glycolysis by Streptococcus mutans and Streptococcus sanguis: effect of low pH and fluoride.
    Iwami Y; Hata S; Schachtele CF; Yamada T
    Oral Microbiol Immunol; 1995 Dec; 10(6):355-9. PubMed ID: 8602343
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Difference in the xylitol sensitivity of acid production among Streptococcus mutans strains and the biochemical mechanism.
    Miyasawa-Hori H; Aizawa S; Takahashi N
    Oral Microbiol Immunol; 2006 Aug; 21(4):201-5. PubMed ID: 16842502
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The pH-dependence of sugar-transport and glycolysis in cultured Ehrlich ascites-tumour cells.
    Kaminskas E
    Biochem J; 1978 Aug; 174(2):453-9. PubMed ID: 30454
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Kinetic properties of electrogenic Na+/H+ antiport in membrane vesicles from an alkalophilic Bacillus sp.
    Kitada M; Horikoshi K
    J Bacteriol; 1992 Sep; 174(18):5936-40. PubMed ID: 1325968
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Glucose transport in Streptococcus mutans: preparation of cytoplasmic membranes and characteristics of phosphotransferase activity.
    Schachtele CF
    J Dent Res; 1975; 54(2):330-8. PubMed ID: 1054344
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The role of phosphoenolpyruvate in the simultaneous uptake of fructose and 2-deoxyglucose by Escherichia coli.
    Kornberg H; Lambourne LT
    Proc Natl Acad Sci U S A; 1994 Nov; 91(23):11080-3. PubMed ID: 7972013
    [TBL] [Abstract][Full Text] [Related]  

  • 52. [Induction of fluoride-resistant mutant of S. mutans and the measurement of its acidogenesis in vitro].
    Sheng J; Liu Z
    Zhonghua Kou Qiang Yi Xue Za Zhi; 2000 Mar; 35(2):95-8. PubMed ID: 11780495
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effect of growth conditions on sucrose phosphotransferase activity of Streptococcus mutans.
    Slee AM; Tanzer JM
    Infect Immun; 1980 Mar; 27(3):922-7. PubMed ID: 7380558
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Regulation of the glucose phosphotransferase system in Brochothrix thermosphacta by membrane energization.
    Singh SP; Bishop CJ; Vink R; Rogers PJ
    J Bacteriol; 1985 Oct; 164(1):367-78. PubMed ID: 2995314
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Regulation of hexitol catabolism in Streptococcus mutans.
    Dills SS; Seno S
    J Bacteriol; 1983 Feb; 153(2):861-6. PubMed ID: 6401708
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Two glucose transport systems in Bacillus licheniformis.
    Tangney M; Priest FG; Mitchell WJ
    J Bacteriol; 1993 Apr; 175(7):2137-42. PubMed ID: 8384621
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Glucose 6-phosphate transport in membrane vesicles isolated from Escherichia coli: effect of imposed electrical potential and pH gradient.
    LeBlanc G; Rimon G; Kaback HR
    Biochemistry; 1980 May; 19(11):2522-8. PubMed ID: 6992861
    [TBL] [Abstract][Full Text] [Related]  

  • 58. L-malate transport and proton symport in vesicles prepared from Pseudomonas putida.
    Agbanyo FR; Moses G; Taylor NF
    Biochem Cell Biol; 1986 Nov; 64(11):1190-4. PubMed ID: 3030368
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Catabolite modification of acid tolerance of Streptococcus mutans GS-5.
    Belli WA; Marquis RE
    Oral Microbiol Immunol; 1994 Feb; 9(1):29-34. PubMed ID: 7478752
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Identification and properties of distinct sucrose and glucose phosphotransferase enzyme II activities in Streptococcus mutans 6715g.
    Jacobson GR; Mimura CS; Scott PJ; Thompson PW
    Infect Immun; 1984 Dec; 46(3):854-6. PubMed ID: 6500714
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.