BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 22987115)

  • 1. Transcriptomic changes and signalling pathways induced by arsenic stress in rice roots.
    Huang TL; Nguyen QT; Fu SF; Lin CY; Chen YC; Huang HJ
    Plant Mol Biol; 2012 Dec; 80(6):587-608. PubMed ID: 22987115
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Autotoxicity mechanism of Oryza sativa: transcriptome response in rice roots exposed to ferulic acid.
    Chi WC; Chen YA; Hsiung YC; Fu SF; Chou CH; Trinh NN; Chen YC; Huang HJ
    BMC Genomics; 2013 May; 14():351. PubMed ID: 23705659
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptome analysis of phytohormone, transporters and signaling pathways in response to vanadium stress in rice roots.
    Lin CY; Trinh NN; Lin CW; Huang HJ
    Plant Physiol Biochem; 2013 May; 66():98-104. PubMed ID: 23500712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of transcriptome profiles and signaling pathways for the allelochemical juglone in rice roots.
    Chi WC; Fu SF; Huang TL; Chen YA; Chen CC; Huang HJ
    Plant Mol Biol; 2011 Dec; 77(6):591-607. PubMed ID: 22065257
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatio-temporal dynamics in global rice gene expression (Oryza sativa L.) in response to high ammonium stress.
    Sun L; Di D; Li G; Kronzucker HJ; Shi W
    J Plant Physiol; 2017 May; 212():94-104. PubMed ID: 28282528
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromium stress response effect on signal transduction and expression of signaling genes in rice.
    Trinh NN; Huang TL; Chi WC; Fu SF; Chen CC; Huang HJ
    Physiol Plant; 2014 Feb; 150(2):205-24. PubMed ID: 24033343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genomic profiling of rice roots with short- and long-term chromium stress.
    Huang TL; Huang LY; Fu SF; Trinh NN; Huang HJ
    Plant Mol Biol; 2014 Sep; 86(1-2):157-70. PubMed ID: 25056418
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heavy metals induce oxidative stress and genome-wide modulation in transcriptome of rice root.
    Dubey S; Shri M; Misra P; Lakhwani D; Bag SK; Asif MH; Trivedi PK; Tripathi RD; Chakrabarty D
    Funct Integr Genomics; 2014 Jun; 14(2):401-17. PubMed ID: 24553786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Early signalling pathways in rice roots under vanadate stress.
    Lin CW; Lin CY; Chang CC; Lee RH; Tsai TM; Chen PY; Chi WC; Huang HJ
    Plant Physiol Biochem; 2009 May; 47(5):369-76. PubMed ID: 19250836
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distinct signalling pathways for induction of MAP kinase activities by cadmium and copper in rice roots.
    Yeh CM; Chien PS; Huang HJ
    J Exp Bot; 2007; 58(3):659-71. PubMed ID: 17259646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. OsHAC4 is critical for arsenate tolerance and regulates arsenic accumulation in rice.
    Xu J; Shi S; Wang L; Tang Z; Lv T; Zhu X; Ding X; Wang Y; Zhao FJ; Wu Z
    New Phytol; 2017 Aug; 215(3):1090-1101. PubMed ID: 28407265
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of early transcriptome responses to copper and cadmium in rice roots.
    Lin CY; Trinh NN; Fu SF; Hsiung YC; Chia LC; Lin CW; Huang HJ
    Plant Mol Biol; 2013 Mar; 81(4-5):507-22. PubMed ID: 23400832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arsenic stress activates MAP kinase in rice roots and leaves.
    Rao KP; Vani G; Kumar K; Wankhede DP; Misra M; Gupta M; Sinha AK
    Arch Biochem Biophys; 2011 Feb; 506(1):73-82. PubMed ID: 21081102
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exogenous melatonin regulates endogenous phytohormone homeostasis and thiol-mediated detoxification in two indica rice cultivars under arsenic stress.
    Samanta S; Banerjee A; Roychoudhury A
    Plant Cell Rep; 2021 Aug; 40(8):1585-1602. PubMed ID: 34003317
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of contrasting rice (Oryza sativa L.) genotypes reveals the Pi-efficient schema for phosphate starvation tolerance.
    Kumar S; Pallavi ; Chugh C; Seem K; Kumar S; Vinod KK; Mohapatra T
    BMC Plant Biol; 2021 Jun; 21(1):282. PubMed ID: 34154533
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biochemical and molecular responses underlying differential arsenic tolerance in rice (Oryza sativa L.).
    Begum MC; Islam MS; Islam M; Amin R; Parvez MS; Kabir AH
    Plant Physiol Biochem; 2016 Jul; 104():266-77. PubMed ID: 27061371
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptional profiling in cadmium-treated rice seedling roots using suppressive subtractive hybridization.
    Zhang M; Liu X; Yuan L; Wu K; Duan J; Wang X; Yang L
    Plant Physiol Biochem; 2012 Jan; 50(1):79-86. PubMed ID: 21855360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exogenous application of methyl jasmonate alleviates arsenic toxicity by modulating its uptake and translocation in rice (Oryza sativa L.).
    Verma G; Srivastava D; Narayan S; Shirke PA; Chakrabarty D
    Ecotoxicol Environ Saf; 2020 Sep; 201():110735. PubMed ID: 32480163
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Root transcriptome of two contrasting indica rice cultivars uncovers regulators of root development and physiological responses.
    Singh A; Kumar P; Gautam V; Rengasamy B; Adhikari B; Udayakumar M; Sarkar AK
    Sci Rep; 2016 Dec; 6():39266. PubMed ID: 28000793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A transcriptomic (RNA-seq) analysis of genes responsive to both cadmium and arsenic stress in rice root.
    Huang Y; Chen H; Reinfelder JR; Liang X; Sun C; Liu C; Li F; Yi J
    Sci Total Environ; 2019 May; 666():445-460. PubMed ID: 30802660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.