These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 22987121)

  • 21. Preparation and investigation of thermoluminescence properties of CaSO4:Tm,Cu.
    Kása I; Chobola R; Mell P; Szakács S; Kerekes A
    Radiat Prot Dosimetry; 2007; 123(1):32-5. PubMed ID: 16905762
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The analysis of thermoluminescent glow peaks of natural calcite after beta irradiation.
    Yildirim RG; Kafadar VE; Yazici AN; Gün E
    Radiat Prot Dosimetry; 2012 Sep; 151(3):397-402. PubMed ID: 22355170
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dosimetry of heavy charged particles with thermoluminescence detectors--models and applications.
    Olko P; Bilski P; Budzanowski M; Molokanov A
    Radiat Prot Dosimetry; 2004; 110(1-4):315-8. PubMed ID: 15353666
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thermoluminescence dosimetry in mixed neutron/gamma radiation beam.
    Yudelev M; Hunter S; Farr JB
    Radiat Prot Dosimetry; 2004; 110(1-4):613-7. PubMed ID: 15353717
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A comparative study on the susceptibility of LiF:Mg,Ti (TLD-100) and LiF:Mg,Cu,P (TLD-100H) to spurious signals in thermoluminescence dosimetry.
    Al-Haj A; Lagarde C; Mahyoub F
    Radiat Prot Dosimetry; 2007; 125(1-4):399-402. PubMed ID: 17223633
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Critical examination of the measurement methods in the field of personal dosimetry. Illustration of a new personal schedule adopted by the dosimetric service of the National Nuclear Energy commission].
    Busuoli G; Cavallini A
    Rev Immunol (Paris); 1971; 35(4):149-55. PubMed ID: 5152876
    [No Abstract]   [Full Text] [Related]  

  • 27. Experimental investigation of the 100 keV X-ray dose response of the high-temperature thermoluminescence in LiF:Mg,Ti (TLD-100): theoretical interpretation using the unified interaction model.
    Livingstone J; Horowitz YS; Oster L; Datz H; Lerch M; Rosenfeld A; Horowitz A
    Radiat Prot Dosimetry; 2010 Mar; 138(4):320-33. PubMed ID: 19934115
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Individual monitoring based on magnesium borate.
    Prokić M
    Radiat Prot Dosimetry; 2007; 125(1-4):247-50. PubMed ID: 16980707
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The use of active personal dosemeters as a personal monitoring device: comparison with TL dosimetry.
    Boziari A; Koukorava C; Carinou E; Hourdakis CJ; Kamenopoulou V
    Radiat Prot Dosimetry; 2011 Mar; 144(1-4):173-6. PubMed ID: 21196464
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Discrimination of photon from proton irradiation using glow curve feature extraction and vector analysis.
    Skopec M; Loew M; Price JL; Guardala N; Moscovitch M
    Radiat Prot Dosimetry; 2006; 120(1-4):268-72. PubMed ID: 16614091
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dose evaluation in criticality accidents using response of Panasonic TL personal dosemeters (UD-809/UD-802).
    Zeyrek CT; Gündüz H
    Radiat Prot Dosimetry; 2012 Sep; 151(3):564-9. PubMed ID: 22389154
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Exploring stable thermoluminescence signal in natural Barite (BaSO4) for retrospective dosimetry.
    Sharma SK; Thomas J; Pandian MS; Rao PS; Gartia RK; Singhvi AK
    Appl Radiat Isot; 2015 Nov; 105():198-203. PubMed ID: 26325582
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Advanced multistage deconvolution applied to composite glow peak 5 in LiF:Mg,Ti (TLD-100).
    Horowitz YS; Fuks E; Oster L; Podpalov L; Belaish Y; Shachar BB
    Radiat Prot Dosimetry; 2007; 126(1-4):322-5. PubMed ID: 17517677
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Commercial optical fibre as TLD material.
    Espinosa G; Golzarri JI; Bogard J; García-Macedo J
    Radiat Prot Dosimetry; 2006; 119(1-4):197-200. PubMed ID: 16709711
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The application of LiF:Mg,Cu,P to large scale personnel dosimetry: current status and future directions.
    Moscovitch M; St John TJ; Cassata JR; Blake PK; Rotunda JE; Ramlo M; Velbeck KJ; Luo LZ
    Radiat Prot Dosimetry; 2006; 119(1-4):248-54. PubMed ID: 16835277
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Introduction to the tasks of clinical dosimetry and its requirements in dosimetric methods].
    Rassow J
    Strahlentherapie; 1985 Feb; 161(2):88-90. PubMed ID: 3975945
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [The use of thermoluminescent dosimetry systems in individual dosimetry and environmental monitoring].
    Burgkhardt B
    Strahlentherapie; 1985 Feb; 161(2):84-5. PubMed ID: 3975943
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Passive detectors for neutron personal dosimetry: state of the art.
    d'Errico F; Bos AJ
    Radiat Prot Dosimetry; 2004; 110(1-4):195-200. PubMed ID: 15353644
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterizing thermoluminescence properties of calcium halophosphate fluorescent coating powder for radiation dosimetry.
    Inyang EP; Taleatu BA; Oketayo OO; Mokobia CE; Adenodi RA; Balogun EA
    J Environ Sci Eng; 2011 Jan; 53(1):1-6. PubMed ID: 22324138
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Computerised curve deconvolution of TL/OSL curves using a popular spreadsheet program.
    Afouxenidis D; Polymeris GS; Tsirliganis NC; Kitis G
    Radiat Prot Dosimetry; 2012 May; 149(4):363-70. PubMed ID: 21765155
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.