These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 22987344)

  • 1. Hierarchical representation of supersecondary structures using a graph-theoretical approach.
    Koch I; Kreuchwig A; May P
    Methods Mol Biol; 2013; 932():7-33. PubMed ID: 22987344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional structural motifs for protein-ligand, protein-protein, and protein-nucleic acid interactions and their connection to supersecondary structures.
    Kinjo AR; Nakamura H
    Methods Mol Biol; 2013; 932():295-315. PubMed ID: 22987360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A survey of machine learning methods for secondary and supersecondary protein structure prediction.
    Ho HK; Zhang L; Ramamohanarao K; Martin S
    Methods Mol Biol; 2013; 932():87-106. PubMed ID: 22987348
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of protein sheet topologies by graph theoretical methods.
    Koch I; Kaden F; Selbig J
    Proteins; 1992 Apr; 12(4):314-23. PubMed ID: 1579565
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mining super-secondary structure motifs from 3d protein structures: a sequence order independent approach.
    Aung Z; Li J
    Genome Inform; 2007; 19():15-26. PubMed ID: 18546501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Creating supersecondary structures with BuildBeta.
    Crivelli S; Max N
    Methods Mol Biol; 2013; 932():115-40. PubMed ID: 22987350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PTGL--a web-based database application for protein topologies.
    May P; Barthel S; Koch I
    Bioinformatics; 2004 Nov; 20(17):3277-9. PubMed ID: 15217820
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparing graph representations of protein structure for mining family-specific residue-based packing motifs.
    Huan J; Bandyopadhyay D; Wang W; Snoeyink J; Prins J; Tropsha A
    J Comput Biol; 2005; 12(6):657-71. PubMed ID: 16108709
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational prediction of secondary and supersecondary structures.
    Chen K; Kurgan L
    Methods Mol Biol; 2013; 932():63-86. PubMed ID: 22987347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational simulations of protein folding to engineer amino acid sequences to encourage desired supersecondary structure formation.
    Gerstman BS; Chapagain PP
    Methods Mol Biol; 2013; 932():191-204. PubMed ID: 22987354
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of structural motifs from protein coordinate data: secondary structure and first-level supersecondary structure.
    Richards FM; Kundrot CE
    Proteins; 1988; 3(2):71-84. PubMed ID: 3399495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On representation of proteins by star-like graphs.
    Randić M; Zupan J; Vikić-Topić D
    J Mol Graph Model; 2007 Jul; 26(1):290-305. PubMed ID: 17223597
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supersecondary structure prediction using Chou's pseudo amino acid composition.
    Zou D; He Z; He J; Xia Y
    J Comput Chem; 2011 Jan; 32(2):271-8. PubMed ID: 20652881
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient identification and analysis of substructures in proteins using the kappa-tau framework: left turns and helix c-cap motifs.
    Soumpasis DM; Strahm MC
    J Biomol Struct Dyn; 2000 Jun; 17(6):965-79. PubMed ID: 10949164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Supersecondary structure prediction of transmembrane beta-barrel proteins.
    Tran Vdu T; Chassignet P; Steyaert JM
    Methods Mol Biol; 2013; 932():277-94. PubMed ID: 22987359
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 2D molecular graphics: a flattened world of chemistry and biology.
    Zhou P; Shang Z
    Brief Bioinform; 2009 May; 10(3):247-58. PubMed ID: 19332474
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of the structural motifs of sandwich proteins.
    Fokas AS; Gelfand IM; Kister AE
    Proc Natl Acad Sci U S A; 2004 Nov; 101(48):16780-3. PubMed ID: 15550537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comprehensive structural classification of ligand-binding motifs in proteins.
    Kinjo AR; Nakamura H
    Structure; 2009 Feb; 17(2):234-46. PubMed ID: 19217394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional neighbors: inferring relationships between nonhomologous protein families using family-specific packing motifs.
    Bandyopadhyay D; Huan J; Liu J; Prins J; Snoeyink J; Wang W; Tropsha A
    IEEE Trans Inf Technol Biomed; 2010 Sep; 14(5):1137-43. PubMed ID: 20570776
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Information-Theoretic Inference of an Optimal Dictionary of Protein Supersecondary Structures.
    Konagurthu AS; Subramanian R; Allison L; Abramson D; de la Banda MG; Stuckey PJ; Lesk AM
    Methods Mol Biol; 2019; 1958():123-131. PubMed ID: 30945216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.