These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Combined prediction of transmembrane topology and signal peptide of beta-barrel proteins: using a hidden Markov model and genetic algorithms. Zou L; Wang Z; Wang Y; Hu F Comput Biol Med; 2010 Jul; 40(7):621-8. PubMed ID: 20488436 [TBL] [Abstract][Full Text] [Related]
8. A survey of machine learning methods for secondary and supersecondary protein structure prediction. Ho HK; Zhang L; Ramamohanarao K; Martin S Methods Mol Biol; 2013; 932():87-106. PubMed ID: 22987348 [TBL] [Abstract][Full Text] [Related]
9. transFold: a web server for predicting the structure and residue contacts of transmembrane beta-barrels. Waldispühl J; Berger B; Clote P; Steyaert JM Nucleic Acids Res; 2006 Jul; 34(Web Server issue):W189-93. PubMed ID: 16844989 [TBL] [Abstract][Full Text] [Related]
10. A sequence-based computational model for the prediction of the solvent accessible surface area for α-helix and β-barrel transmembrane residues. Wang C; Xi L; Li S; Liu H; Yao X J Comput Chem; 2012 Jan; 33(1):11-7. PubMed ID: 21935968 [TBL] [Abstract][Full Text] [Related]
11. Computational prediction of secondary and supersecondary structures. Chen K; Kurgan L Methods Mol Biol; 2013; 932():63-86. PubMed ID: 22987347 [TBL] [Abstract][Full Text] [Related]
12. How strongly do sequence conservation patterns and empirical scales correlate with exposure patterns of transmembrane helices of membrane proteins? Park Y; Helms V Biopolymers; 2006 Nov; 83(4):389-99. PubMed ID: 16838301 [TBL] [Abstract][Full Text] [Related]
14. Scoring hidden Markov models to discriminate beta-barrel membrane proteins. Deng Y; Liu Q; Li YX Comput Biol Chem; 2004 Jul; 28(3):189-94. PubMed ID: 15261149 [TBL] [Abstract][Full Text] [Related]
15. TMBpro: secondary structure, beta-contact and tertiary structure prediction of transmembrane beta-barrel proteins. Randall A; Cheng J; Sweredoski M; Baldi P Bioinformatics; 2008 Feb; 24(4):513-20. PubMed ID: 18006547 [TBL] [Abstract][Full Text] [Related]
16. Computational simulations of protein folding to engineer amino acid sequences to encourage desired supersecondary structure formation. Gerstman BS; Chapagain PP Methods Mol Biol; 2013; 932():191-204. PubMed ID: 22987354 [TBL] [Abstract][Full Text] [Related]
17. Prediction of transmembrane regions of beta-barrel proteins using ANN- and SVM-based methods. Natt NK; Kaur H; Raghava GP Proteins; 2004 Jul; 56(1):11-8. PubMed ID: 15162482 [TBL] [Abstract][Full Text] [Related]
18. Integrated prediction of protein folding and unfolding rates from only size and structural class. De Sancho D; Muñoz V Phys Chem Chem Phys; 2011 Oct; 13(38):17030-43. PubMed ID: 21670826 [TBL] [Abstract][Full Text] [Related]
19. Sequence motifs and antimotifs in beta-barrel membrane proteins from a genome-wide analysis: the Ala-Tyr dichotomy and chaperone binding motifs. Jackups R; Cheng S; Liang J J Mol Biol; 2006 Oct; 363(2):611-23. PubMed ID: 16973175 [TBL] [Abstract][Full Text] [Related]
20. The modified Mahalanobis Discriminant for predicting outer membrane proteins by using Chou's pseudo amino acid composition. Lin H J Theor Biol; 2008 May; 252(2):350-6. PubMed ID: 18355838 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]