These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 2298736)
1. The ligand specificity for uptake of complexed copper-67 by brain hypothalamic tissue is a function of copper concentration and copper:ligand molar ratio. Katz BM; Barnea A J Biol Chem; 1990 Feb; 265(4):2017-21. PubMed ID: 2298736 [TBL] [Abstract][Full Text] [Related]
2. Uptake of 67copper complexed to 3H-histidine by brain hypothalamic slices: evidence that dissociation of the complex is not the only factor determining 67copper uptake. Barnea A; Katz BM J Inorg Biochem; 1990 Sep; 40(1):81-93. PubMed ID: 2283510 [TBL] [Abstract][Full Text] [Related]
3. High-affinity uptake of 67Cu into a veratridine-releasable pool in brain tissue. Barnea A; Hartter DE; Cho G Am J Physiol; 1989 Aug; 257(2 Pt 1):C315-22. PubMed ID: 2669508 [TBL] [Abstract][Full Text] [Related]
4. A correlation between the ligand specificity for 67copper uptake and for copper-prostaglandin E2 stimulation of the release of gonadotropin-releasing hormone from median eminence explants. Barnea A; Cho G; Hartter DE Endocrinology; 1988 Apr; 122(4):1505-10. PubMed ID: 3278891 [TBL] [Abstract][Full Text] [Related]
5. Further characterization of the process of in vitro uptake of radiolabeled copper by the rat brain. Barnea A; Hartter DE; Cho G; Bhasker KR; Katz BM; Edwards MD J Inorg Biochem; 1990 Oct; 40(2):103-10. PubMed ID: 2092074 [TBL] [Abstract][Full Text] [Related]
6. Brain tissue accumulates 67copper by two ligand-dependent saturable processes. A high affinity, low capacity and a low affinity, high capacity process. Hartter DE; Barnea A J Biol Chem; 1988 Jan; 263(2):799-805. PubMed ID: 3335527 [TBL] [Abstract][Full Text] [Related]
7. Mobilization of copper(II) from plasma components and mechanisms of hepatic copper transport. Darwish HM; Cheney JC; Schmitt RC; Ettinger MJ Am J Physiol; 1984 Jan; 246(1 Pt 1):G72-9. PubMed ID: 6696070 [TBL] [Abstract][Full Text] [Related]
9. The primary structure of human liver manganese superoxide dismutase. Barra D; Schinina ME; Simmaco M; Bannister JV; Bannister WH; Rotilio G; Bossa F J Biol Chem; 1984 Oct; 259(20):12595-601. PubMed ID: 6386798 [TBL] [Abstract][Full Text] [Related]
10. Coordination of copper(II) ions by the fragments of neuropeptide gamma containing D1, H9, H12 residues and products of copper-catalyzed oxidation. Jankowska E; Pietruszka M; Kowalik-Jankowska T Dalton Trans; 2012 Feb; 41(6):1683-94. PubMed ID: 22159001 [TBL] [Abstract][Full Text] [Related]
11. A putative role for extracellular ATP: facilitation of 67copper uptake and of copper stimulation of the release of luteinizing hormone-releasing hormone from median eminence explants. Barnea A; Cho G; Katz BM Brain Res; 1991 Feb; 541(1):93-7. PubMed ID: 2029629 [TBL] [Abstract][Full Text] [Related]
12. Copper.Lys-Gly-His-Lys mediated cleavage of tRNA(Phe): studies of reaction mechanism and cleavage specificity. Bradford S; Kawarasaki Y; Cowan JA J Inorg Biochem; 2009 Jun; 103(6):871-5. PubMed ID: 19386364 [TBL] [Abstract][Full Text] [Related]
13. Copper(II) complex formation processes of alloferon I with point mutation H1K; combined spectroscopic and potentiometric studies. Kuczer M; Pietruszka M; Kowalik-Jankowska T J Inorg Biochem; 2012 Jun; 111():40-9. PubMed ID: 22484499 [TBL] [Abstract][Full Text] [Related]
14. Stimulation and oxidative catalytic inactivation of thermolysin by copper.Cys-Gly-His-Lys. Gokhale NH; Bradford S; Cowan JA J Biol Inorg Chem; 2007 Sep; 12(7):981-7. PubMed ID: 17618468 [TBL] [Abstract][Full Text] [Related]
15. Acid-base properties of the (1-4,18-36) fragments of neuropeptide K and their mono- and polynuclear copper(II) complexes products of metal-catalyzed oxidation. Błaszak M; Jankowska E; Kowalik-Jankowska T Inorg Chem; 2013 Jan; 52(1):130-43. PubMed ID: 23244738 [TBL] [Abstract][Full Text] [Related]
16. Human class 1 heparin-binding growth factor: structure and homology to bovine acidic brain fibroblast growth factor. Harper JW; Strydom DJ; Lobb RR Biochemistry; 1986 Jul; 25(14):4097-103. PubMed ID: 2427112 [TBL] [Abstract][Full Text] [Related]
17. Dinuclear copper(II) complexes with {Cu2(mu-hydroxo)bis(mu-carboxylato)}+ cores and their reactions with sugar phosphate esters: A substrate binding model of fructose-1,6-bisphosphatase. Kato M; Tanase T; Mikuriya M Inorg Chem; 2006 Apr; 45(7):2925-41. PubMed ID: 16562948 [TBL] [Abstract][Full Text] [Related]
18. Evidence for release of copper in the brain: depolarization-induced release of newly taken-up 67copper. Hartter DE; Barnea A Synapse; 1988; 2(4):412-5. PubMed ID: 3187909 [TBL] [Abstract][Full Text] [Related]
19. Copper transport and kinetics in cultured C6 rat glioma cells. Qian Y; Tiffany-Castiglioni E; Harris ED Am J Physiol; 1995 Oct; 269(4 Pt 1):C892-8. PubMed ID: 7485458 [TBL] [Abstract][Full Text] [Related]
20. Primary structure of bovine plasma high-molecular-weight kininogen. The amino acid sequence of a glycopeptide portion (fragment 1) following the C-terminus ot the bradykinin moiety. Han YN; Kato H; Iwanaga S; Suzuki T J Biochem; 1976 Jun; 79(6):1201-22. PubMed ID: 956151 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]