These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 22987422)

  • 1. A real-time PCR detection system for the bois noir and flavescence dorée phytoplasmas and quantification of the target DNA.
    Mehle N; Prezelj N; Hren M; Boben J; Gruden K; Ravnikar M; Dermastia M
    Methods Mol Biol; 2013; 938():253-68. PubMed ID: 22987422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-time PCR for specific detection of three phytoplasmas from the apple proliferation group.
    Mehle N; Nikolić P; Gruden K; Ravnikar M; Dermastia M
    Methods Mol Biol; 2013; 938():269-81. PubMed ID: 22987423
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new TaqMan method for the identification of phytoplasmas associated with grapevine yellows by real-time PCR assay.
    Angelini E; Luca Bianchi G; Filippin L; Morassutti C; Borgo M
    J Microbiol Methods; 2007 Mar; 68(3):613-22. PubMed ID: 17222474
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Grapevine yellows in Northern Italy: molecular identification of Flavescence dorée phytoplasma strains and of Bois Noir phytoplasmas.
    Botti S; Bertaccini A
    J Appl Microbiol; 2007 Dec; 103(6):2325-30. PubMed ID: 18045417
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-time PCR for universal phytoplasma detection and quantification.
    Christensen NM; Nyskjold H; Nicolaisen M
    Methods Mol Biol; 2013; 938():245-52. PubMed ID: 22987421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A panel of real-time PCR assays for specific detection of three phytoplasmas from the apple proliferation group.
    Nikolić P; Mehle N; Gruden K; Ravnikar M; Dermastia M
    Mol Cell Probes; 2010 Oct; 24(5):303-9. PubMed ID: 20600822
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reverse transcription-PCR for phytoplasma detection utilizing crude sap extractions.
    Margaria P; Palmano S
    Methods Mol Biol; 2013; 938():283-9. PubMed ID: 22987424
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of the 23S rRNA gene as a target template in the universal loop-mediated isothermal amplification (LAMP) of genomic DNA from phytoplasmas.
    Akahori M; Miyazaki A; Koinuma H; Tokuda R; Iwabuchi N; Kitazawa Y; Maejima K; Namba S; Yamaji Y
    Microbiol Spectr; 2024 May; 12(5):e0010624. PubMed ID: 38534170
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular Diversity of Phytoplasmas Associated with Grapevine Yellows Disease in North-Eastern Italy.
    Zambon Y; Canel A; Bertaccini A; Contaldo N
    Phytopathology; 2018 Feb; 108(2):206-214. PubMed ID: 28945521
    [TBL] [Abstract][Full Text] [Related]  

  • 10. First Report of Flavescence Dorée-Related Phytoplasma Affecting Grapevines in Croatia.
    Šeruga Musić M; Škorić D; Haluška I; Križanac I; Plavec J; Mikec I
    Plant Dis; 2011 Mar; 95(3):353. PubMed ID: 30743535
    [TBL] [Abstract][Full Text] [Related]  

  • 11. First report of Flavescence dorée-related Phytoplasma in Grapevine in Germany.
    Jarausch B; Biancu S; Kugler S; Wetzel T; Baumann M; Winterhagen P; Jarausch W; Kortekamp A; Maixner M
    Plant Dis; 2021 Apr; ():. PubMed ID: 33823613
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diagnosis of Phytoplasmas by Real-Time PCR Using Locked Nucleic Acid (LNA) Probes.
    Palmano S; Mulholland V; Kenyon D; Saddler GS; Jeffries C
    Methods Mol Biol; 2015; 1302():113-22. PubMed ID: 25981250
    [TBL] [Abstract][Full Text] [Related]  

  • 13. One-step multiplex quantitative RT-PCR for the simultaneous detection of viroids and phytoplasmas of pome fruit trees.
    Malandraki I; Varveri C; Olmos A; Vassilakos N
    J Virol Methods; 2015 Mar; 213():12-7. PubMed ID: 25479356
    [TBL] [Abstract][Full Text] [Related]  

  • 14. EvaGreen real-time PCR protocol for specific 'Candidatus Phytoplasma mali' detection and quantification in insects.
    Monti M; Martini M; Tedeschi R
    Mol Cell Probes; 2013; 27(3-4):129-36. PubMed ID: 23474195
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A new approach to apple proliferation detection: a highly sensitive real-time PCR assay.
    Baric S; Dalla-Via J
    J Microbiol Methods; 2004 Apr; 57(1):135-45. PubMed ID: 15003696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. First Report of Bois Noir Phytoplasma in Grapevine in Canada.
    Rott M; Johnson R; Masters C; Green M
    Plant Dis; 2007 Dec; 91(12):1682. PubMed ID: 30780629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A simple and rapid protocol of crude DNA extraction from apple trees for PCR and real-time PCR detection of 'Candidatus Phytoplasma mali'.
    Aldaghi M; Massart S; Dutrecq O; Bertaccini A; Jijakli MH; Lepoivre P
    J Virol Methods; 2009 Mar; 156(1-2):96-101. PubMed ID: 19010357
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative Analysis with Droplet Digital PCR.
    Mehle N; Dreo T
    Methods Mol Biol; 2019; 1875():171-186. PubMed ID: 30362004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and evaluation of different complex media for phytoplasma isolation and growth.
    Contaldo N; Satta E; Zambon Y; Paltrinieri S; Bertaccini A
    J Microbiol Methods; 2016 Aug; 127():105-110. PubMed ID: 27262375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Molecular detection and variability of jujube witches'-broom phytoplasmas from different cultivars in various regions of China].
    Xu Q; Tian G; Wang Z; Kong F; Li Y; Wang H
    Wei Sheng Wu Xue Bao; 2009 Nov; 49(11):1510-9. PubMed ID: 20112681
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.