These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
190 related articles for article (PubMed ID: 22987606)
1. Combining individual patient data and aggregate data in mixed treatment comparison meta-analysis: Individual patient data may be beneficial if only for a subset of trials. Donegan S; Williamson P; D'Alessandro U; Garner P; Smith CT Stat Med; 2013 Mar; 32(6):914-30. PubMed ID: 22987606 [TBL] [Abstract][Full Text] [Related]
2. Assessing the consistency assumption by exploring treatment by covariate interactions in mixed treatment comparison meta-analysis: individual patient-level covariates versus aggregate trial-level covariates. Donegan S; Williamson P; D'Alessandro U; Tudur Smith C Stat Med; 2012 Dec; 31(29):3840-57. PubMed ID: 22786621 [TBL] [Abstract][Full Text] [Related]
3. Meta-analysis of continuous outcomes combining individual patient data and aggregate data. Riley RD; Lambert PC; Staessen JA; Wang J; Gueyffier F; Thijs L; Boutitie F Stat Med; 2008 May; 27(11):1870-93. PubMed ID: 18069721 [TBL] [Abstract][Full Text] [Related]
4. Comparison of aggregate and individual participant data approaches to meta-analysis of randomised trials: An observational study. Tierney JF; Fisher DJ; Burdett S; Stewart LA; Parmar MKB PLoS Med; 2020 Jan; 17(1):e1003019. PubMed ID: 32004320 [TBL] [Abstract][Full Text] [Related]
5. Meta-analysis of a continuous outcome combining individual patient data and aggregate data: a method based on simulated individual patient data. Yamaguchi Y; Sakamoto W; Goto M; Staessen JA; Wang J; Gueyffier F; Riley RD Res Synth Methods; 2014 Dec; 5(4):322-51. PubMed ID: 26052956 [TBL] [Abstract][Full Text] [Related]
6. An overview of methods and empirical comparison of aggregate data and individual patient data results for investigating heterogeneity in meta-analysis of time-to-event outcomes. Smith CT; Williamson PR; Marson AG J Eval Clin Pract; 2005 Oct; 11(5):468-78. PubMed ID: 16164588 [TBL] [Abstract][Full Text] [Related]
7. Evidence synthesis combining individual patient data and aggregate data: a systematic review identified current practice and possible methods. Riley RD; Simmonds MC; Look MP J Clin Epidemiol; 2007 May; 60(5):431-9. PubMed ID: 17419953 [TBL] [Abstract][Full Text] [Related]
8. Meta-analysis of individual patient data versus aggregate data from longitudinal clinical trials. Jones AP; Riley RD; Williamson PR; Whitehead A Clin Trials; 2009 Feb; 6(1):16-27. PubMed ID: 19254930 [TBL] [Abstract][Full Text] [Related]
9. A comparison of the statistical performance of different meta-analysis models for the synthesis of subgroup effects from randomized clinical trials. da Costa BR; Sutton AJ BMC Med Res Methodol; 2019 Oct; 19(1):198. PubMed ID: 31655550 [TBL] [Abstract][Full Text] [Related]
10. Mixed treatment comparisons using aggregate and individual participant level data. Saramago P; Sutton AJ; Cooper NJ; Manca A Stat Med; 2012 Dec; 31(28):3516-36. PubMed ID: 22764016 [TBL] [Abstract][Full Text] [Related]
11. A linearization approach for the model-based analysis of combined aggregate and individual patient data. Ravva P; Karlsson MO; French JL Stat Med; 2014 Apr; 33(9):1460-76. PubMed ID: 24488864 [TBL] [Abstract][Full Text] [Related]
12. Efficient integration of aggregate data and individual participant data in one-way mixed models. Agarwala N; Park J; Roy A Stat Med; 2022 Apr; 41(9):1555-1572. PubMed ID: 35040178 [TBL] [Abstract][Full Text] [Related]
13. Get real in individual participant data (IPD) meta-analysis: a review of the methodology. Debray TP; Moons KG; van Valkenhoef G; Efthimiou O; Hummel N; Groenwold RH; Reitsma JB; Res Synth Methods; 2015 Dec; 6(4):293-309. PubMed ID: 26287812 [TBL] [Abstract][Full Text] [Related]
14. Patient-level compared with study-level meta-analyses demonstrate consistency of D-dimer as predictor of venous thromboembolic recurrences. Marcucci M; Smith CT; Douketis JD; Tosetto A; Baglin T; Cushman M; Eichinger S; Palareti G; Poli D; Tait RC; Iorio A J Clin Epidemiol; 2013 Apr; 66(4):415-25. PubMed ID: 23395515 [TBL] [Abstract][Full Text] [Related]
15. A scoping review of indirect comparison methods and applications using individual patient data. Veroniki AA; Straus SE; Soobiah C; Elliott MJ; Tricco AC BMC Med Res Methodol; 2016 Apr; 16():47. PubMed ID: 27116943 [TBL] [Abstract][Full Text] [Related]
16. One-stage individual participant data meta-analysis models: estimation of treatment-covariate interactions must avoid ecological bias by separating out within-trial and across-trial information. Hua H; Burke DL; Crowther MJ; Ensor J; Tudur Smith C; Riley RD Stat Med; 2017 Feb; 36(5):772-789. PubMed ID: 27910122 [TBL] [Abstract][Full Text] [Related]
17. A recursive partitioning approach for subgroup identification in individual patient data meta-analysis. Mistry D; Stallard N; Underwood M Stat Med; 2018 Apr; 37(9):1550-1561. PubMed ID: 29383818 [TBL] [Abstract][Full Text] [Related]
18. The relative benefits of meta-analysis conducted with individual participant data versus aggregated data. Cooper H; Patall EA Psychol Methods; 2009 Jun; 14(2):165-76. PubMed ID: 19485627 [TBL] [Abstract][Full Text] [Related]
19. Use of multiple covariates in assessing treatment-effect modifiers: A methodological review of individual participant data meta-analyses. Godolphin PJ; Marlin N; Cornett C; Fisher DJ; Tierney JF; White IR; RogoziĆska E Res Synth Methods; 2024 Jan; 15(1):107-116. PubMed ID: 37771175 [TBL] [Abstract][Full Text] [Related]
20. No consistent evidence of data availability bias existed in recent individual participant data meta-analyses: a meta-epidemiological study. Tsujimoto Y; Fujii T; Onishi A; Omae K; Luo Y; Imai H; Takahashi S; Itaya T; Pinson C; Nevitt SJ; Furukawa TA J Clin Epidemiol; 2020 Feb; 118():107-114.e5. PubMed ID: 31654789 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]