These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
152 related articles for article (PubMed ID: 22987610)
1. Vertically aligned Ta3N5 nanorod arrays for solar-driven photoelectrochemical water splitting. Li Y; Takata T; Cha D; Takanabe K; Minegishi T; Kubota J; Domen K Adv Mater; 2013 Jan; 25(1):125-31. PubMed ID: 22987610 [TBL] [Abstract][Full Text] [Related]
2. Hydrothermal growth of highly oriented single crystalline Ta2O5 nanorod arrays and their conversion to Ta3N5 for efficient solar driven water splitting. Su Z; Wang L; Grigorescu S; Lee K; Schmuki P Chem Commun (Camb); 2014 Dec; 50(98):15561-4. PubMed ID: 25357012 [TBL] [Abstract][Full Text] [Related]
3. Template-free synthesis of Ta3N5 nanorod arrays for efficient photoelectrochemical water splitting. Zhen C; Wang L; Liu G; Lu GQ; Cheng HM Chem Commun (Camb); 2013 Apr; 49(29):3019-21. PubMed ID: 23463440 [TBL] [Abstract][Full Text] [Related]
4. Fabrication of highly ordered Ta2O5 and Ta3N5 nanorod arrays by nanoimprinting and through-mask anodization. Li Y; Nagato K; Delaunay JJ; Kubota J; Domen K Nanotechnology; 2014 Jan; 25(1):014013. PubMed ID: 24334655 [TBL] [Abstract][Full Text] [Related]
5. Surface defect passivation of Ta Li F; Jian J; Xu Y; Liu W; Ye Q; Feng F; Li C; Jia L; Wang H J Chem Phys; 2020 Jul; 153(2):024705. PubMed ID: 32668911 [TBL] [Abstract][Full Text] [Related]
6. Heterogeneous p-n Junction CdS/Cu Wang L; Wang W; Chen Y; Yao L; Zhao X; Shi H; Cao M; Liang Y ACS Appl Mater Interfaces; 2018 Apr; 10(14):11652-11662. PubMed ID: 29544248 [TBL] [Abstract][Full Text] [Related]
7. Heterostructured TiO2 Nanorod@Nanobowl Arrays for Efficient Photoelectrochemical Water Splitting. Wang W; Dong J; Ye X; Li Y; Ma Y; Qi L Small; 2016 Mar; 12(11):1469-78. PubMed ID: 26779803 [TBL] [Abstract][Full Text] [Related]
8. Physicochemical insights into semiconductor properties of a semitransparent tantalum nitride photoanode for solar water splitting. Higashi T; Nishiyama H; Pihosh Y; Wakishima K; Kawase Y; Sasaki Y; Nagaoka A; Yoshino K; Takanabe K; Domen K Phys Chem Chem Phys; 2023 Aug; 25(30):20737-20748. PubMed ID: 37490272 [TBL] [Abstract][Full Text] [Related]
9. Hydrogenated TiO Liang Z; Hou H; Fang Z; Gao F; Wang L; Chen D; Yang W ACS Appl Mater Interfaces; 2019 May; 11(21):19167-19175. PubMed ID: 31058485 [TBL] [Abstract][Full Text] [Related]
11. Ta Xu K; Chatzitakis A; Jensen IJT; Grandcolas M; Norby T Photochem Photobiol Sci; 2019 Apr; 18(4):837-844. PubMed ID: 30411099 [TBL] [Abstract][Full Text] [Related]
12. Nanoporous Cubic Silicon Carbide Photoanodes for Enhanced Solar Water Splitting. Jian JX; Jokubavicius V; Syväjärvi M; Yakimova R; Sun J ACS Nano; 2021 Mar; 15(3):5502-5512. PubMed ID: 33605135 [TBL] [Abstract][Full Text] [Related]
13. CuO nanorod arrays by gas-phase cation exchange for efficient photoelectrochemical water splitting. Zheng Z; Morgan M; Maji P; Xia X; Zu X; Zhou W RSC Adv; 2023 Jan; 13(6):3487-3493. PubMed ID: 36756593 [TBL] [Abstract][Full Text] [Related]
14. Mg-Zr Cosubstituted Ta3N5 Photoanode for Lower-Onset-Potential Solar-Driven Photoelectrochemical Water Splitting. Seo J; Takata T; Nakabayashi M; Hisatomi T; Shibata N; Minegishi T; Domen K J Am Chem Soc; 2015 Oct; 137(40):12780-3. PubMed ID: 26426439 [TBL] [Abstract][Full Text] [Related]
15. Nanoporous 6H-SiC Photoanodes with a Conformal Coating of Ni-FeOOH Nanorods for Zero-Onset-Potential Water Splitting. Li B; Jian J; Chen J; Yu X; Sun J ACS Appl Mater Interfaces; 2020 Feb; 12(6):7038-7046. PubMed ID: 31967447 [TBL] [Abstract][Full Text] [Related]
16. Coating Polymeric Carbon Nitride Photoanodes on Conductive Y:ZnO Nanorod Arrays for Overall Water Splitting. Fang Y; Xu Y; Li X; Ma Y; Wang X Angew Chem Int Ed Engl; 2018 Jul; 57(31):9749-9753. PubMed ID: 29901252 [TBL] [Abstract][Full Text] [Related]
17. Thin film transfer for the fabrication of tantalum nitride photoelectrodes with controllable layered structures for water splitting. Wang C; Hisatomi T; Minegishi T; Nakabayashi M; Shibata N; Katayama M; Domen K Chem Sci; 2016 Sep; 7(9):5821-5826. PubMed ID: 30034721 [TBL] [Abstract][Full Text] [Related]
18. Bridging the transport pathway of charge carriers in a Ta3N5 nanotube array photoanode for solar water splitting. Zhang P; Wang T; Zhang J; Chang X; Gong J Nanoscale; 2015 Aug; 7(31):13153-8. PubMed ID: 26061973 [TBL] [Abstract][Full Text] [Related]
19. Controlled growth of vertically oriented hematite/Pt composite nanorod arrays: use for photoelectrochemical water splitting. Mao A; Park NG; Han GY; Park JH Nanotechnology; 2011 Apr; 22(17):175703. PubMed ID: 21411913 [TBL] [Abstract][Full Text] [Related]
20. Electrochemical fabrication of ZnO-CdSe core-shell nanorod arrays for efficient photoelectrochemical water splitting. Miao J; Yang HB; Khoo SY; Liu B Nanoscale; 2013 Nov; 5(22):11118-24. PubMed ID: 24077389 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]